Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | elex2 | |- ( A e. B -> E. x x e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a | |- ( A e. B -> ( x = A -> x e. B ) ) |
|
2 | 1 | alrimiv | |- ( A e. B -> A. x ( x = A -> x e. B ) ) |
3 | elisset | |- ( A e. B -> E. x x = A ) |
|
4 | exim | |- ( A. x ( x = A -> x e. B ) -> ( E. x x = A -> E. x x e. B ) ) |
|
5 | 2 3 4 | sylc | |- ( A e. B -> E. x x e. B ) |