Metamath Proof Explorer


Theorem elex2

Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011) Avoid ax-9 , ax-ext , df-clab . (Revised by Wolf Lammen, 30-Nov-2024)

Ref Expression
Assertion elex2 ( 𝐴𝐵 → ∃ 𝑥 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 dfclel ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
2 exsimpr ( ∃ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) → ∃ 𝑥 𝑥𝐵 )
3 1 2 sylbi ( 𝐴𝐵 → ∃ 𝑥 𝑥𝐵 )