| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvh3dim.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvh3dim.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dvh3dim.v |
|- V = ( Base ` U ) |
| 4 |
|
dvh1dim.o |
|- .0. = ( 0g ` U ) |
| 5 |
|
dvh1dim.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 7 |
1 2 6 5
|
dvh1dimat |
|- ( ph -> E. p p e. ( LSAtoms ` U ) ) |
| 8 |
1 2 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> U e. LMod ) |
| 10 |
|
simpr |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> p e. ( LSAtoms ` U ) ) |
| 11 |
4 6 9 10
|
lsateln0 |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> E. z e. p z =/= .0. ) |
| 12 |
3 6 9 10
|
lsatssv |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> p C_ V ) |
| 13 |
12
|
sseld |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> ( z e. p -> z e. V ) ) |
| 14 |
13
|
anim1d |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> ( ( z e. p /\ z =/= .0. ) -> ( z e. V /\ z =/= .0. ) ) ) |
| 15 |
14
|
reximdv2 |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> ( E. z e. p z =/= .0. -> E. z e. V z =/= .0. ) ) |
| 16 |
11 15
|
mpd |
|- ( ( ph /\ p e. ( LSAtoms ` U ) ) -> E. z e. V z =/= .0. ) |
| 17 |
7 16
|
exlimddv |
|- ( ph -> E. z e. V z =/= .0. ) |