Metamath Proof Explorer


Theorem dvh1dim

Description: There exists a nonzero vector. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses dvh3dim.h 𝐻 = ( LHyp ‘ 𝐾 )
dvh3dim.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvh3dim.v 𝑉 = ( Base ‘ 𝑈 )
dvh1dim.o 0 = ( 0g𝑈 )
dvh1dim.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion dvh1dim ( 𝜑 → ∃ 𝑧𝑉 𝑧0 )

Proof

Step Hyp Ref Expression
1 dvh3dim.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvh3dim.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dvh3dim.v 𝑉 = ( Base ‘ 𝑈 )
4 dvh1dim.o 0 = ( 0g𝑈 )
5 dvh1dim.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
7 1 2 6 5 dvh1dimat ( 𝜑 → ∃ 𝑝 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) )
8 1 2 5 dvhlmod ( 𝜑𝑈 ∈ LMod )
9 8 adantr ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑈 ∈ LMod )
10 simpr ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) )
11 4 6 9 10 lsateln0 ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑧𝑝 𝑧0 )
12 3 6 9 10 lsatssv ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑝𝑉 )
13 12 sseld ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝑧𝑝𝑧𝑉 ) )
14 13 anim1d ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ( 𝑧𝑝𝑧0 ) → ( 𝑧𝑉𝑧0 ) ) )
15 14 reximdv2 ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ∃ 𝑧𝑝 𝑧0 → ∃ 𝑧𝑉 𝑧0 ) )
16 11 15 mpd ( ( 𝜑𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑧𝑉 𝑧0 )
17 7 16 exlimddv ( 𝜑 → ∃ 𝑧𝑉 𝑧0 )