Step |
Hyp |
Ref |
Expression |
1 |
|
dvh3dim.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvh3dim.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvh3dim.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dvh1dim.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
dvh1dim.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
7 |
1 2 6 5
|
dvh1dimat |
⊢ ( 𝜑 → ∃ 𝑝 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) |
8 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) |
11 |
4 6 9 10
|
lsateln0 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑝 𝑧 ≠ 0 ) |
12 |
3 6 9 10
|
lsatssv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑝 ⊆ 𝑉 ) |
13 |
12
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝑧 ∈ 𝑝 → 𝑧 ∈ 𝑉 ) ) |
14 |
13
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ( 𝑧 ∈ 𝑝 ∧ 𝑧 ≠ 0 ) → ( 𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 0 ) ) ) |
15 |
14
|
reximdv2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝑝 𝑧 ≠ 0 → ∃ 𝑧 ∈ 𝑉 𝑧 ≠ 0 ) ) |
16 |
11 15
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 𝑧 ≠ 0 ) |
17 |
7 16
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 𝑧 ≠ 0 ) |