Metamath Proof Explorer


Theorem dvh1dim

Description: There exists a nonzero vector. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses dvh3dim.h H=LHypK
dvh3dim.u U=DVecHKW
dvh3dim.v V=BaseU
dvh1dim.o 0˙=0U
dvh1dim.k φKHLWH
Assertion dvh1dim φzVz0˙

Proof

Step Hyp Ref Expression
1 dvh3dim.h H=LHypK
2 dvh3dim.u U=DVecHKW
3 dvh3dim.v V=BaseU
4 dvh1dim.o 0˙=0U
5 dvh1dim.k φKHLWH
6 eqid LSAtomsU=LSAtomsU
7 1 2 6 5 dvh1dimat φppLSAtomsU
8 1 2 5 dvhlmod φULMod
9 8 adantr φpLSAtomsUULMod
10 simpr φpLSAtomsUpLSAtomsU
11 4 6 9 10 lsateln0 φpLSAtomsUzpz0˙
12 3 6 9 10 lsatssv φpLSAtomsUpV
13 12 sseld φpLSAtomsUzpzV
14 13 anim1d φpLSAtomsUzpz0˙zVz0˙
15 14 reximdv2 φpLSAtomsUzpz0˙zVz0˙
16 11 15 mpd φpLSAtomsUzVz0˙
17 7 16 exlimddv φzVz0˙