Metamath Proof Explorer


Theorem dvh1dim

Description: There exists a nonzero vector. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses dvh3dim.h H = LHyp K
dvh3dim.u U = DVecH K W
dvh3dim.v V = Base U
dvh1dim.o 0 ˙ = 0 U
dvh1dim.k φ K HL W H
Assertion dvh1dim φ z V z 0 ˙

Proof

Step Hyp Ref Expression
1 dvh3dim.h H = LHyp K
2 dvh3dim.u U = DVecH K W
3 dvh3dim.v V = Base U
4 dvh1dim.o 0 ˙ = 0 U
5 dvh1dim.k φ K HL W H
6 eqid LSAtoms U = LSAtoms U
7 1 2 6 5 dvh1dimat φ p p LSAtoms U
8 1 2 5 dvhlmod φ U LMod
9 8 adantr φ p LSAtoms U U LMod
10 simpr φ p LSAtoms U p LSAtoms U
11 4 6 9 10 lsateln0 φ p LSAtoms U z p z 0 ˙
12 3 6 9 10 lsatssv φ p LSAtoms U p V
13 12 sseld φ p LSAtoms U z p z V
14 13 anim1d φ p LSAtoms U z p z 0 ˙ z V z 0 ˙
15 14 reximdv2 φ p LSAtoms U z p z 0 ˙ z V z 0 ˙
16 11 15 mpd φ p LSAtoms U z V z 0 ˙
17 7 16 exlimddv φ z V z 0 ˙