Metamath Proof Explorer


Theorem dvh4dimlem

Description: Lemma for dvh4dimN . (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses dvh3dim.h H=LHypK
dvh3dim.u U=DVecHKW
dvh3dim.v V=BaseU
dvh3dim.n N=LSpanU
dvh3dim.k φKHLWH
dvh3dim.x φXV
dvh4dim.y φYV
dvhdim.z φZV
dvh4dim.o 0˙=0U
dvh4dim.x φX0˙
dvh4dimlem.y φY0˙
dvh4dimlem.z φZ0˙
Assertion dvh4dimlem φzV¬zNXYZ

Proof

Step Hyp Ref Expression
1 dvh3dim.h H=LHypK
2 dvh3dim.u U=DVecHKW
3 dvh3dim.v V=BaseU
4 dvh3dim.n N=LSpanU
5 dvh3dim.k φKHLWH
6 dvh3dim.x φXV
7 dvh4dim.y φYV
8 dvhdim.z φZV
9 dvh4dim.o 0˙=0U
10 dvh4dim.x φX0˙
11 dvh4dimlem.y φY0˙
12 dvh4dimlem.z φZ0˙
13 eqid LSSumU=LSSumU
14 eqid LSAtomsU=LSAtomsU
15 1 2 5 dvhlmod φULMod
16 eldifsn XV0˙XVX0˙
17 6 10 16 sylanbrc φXV0˙
18 3 4 9 14 15 17 lsatlspsn φNXLSAtomsU
19 eldifsn YV0˙YVY0˙
20 7 11 19 sylanbrc φYV0˙
21 3 4 9 14 15 20 lsatlspsn φNYLSAtomsU
22 eldifsn ZV0˙ZVZ0˙
23 8 12 22 sylanbrc φZV0˙
24 3 4 9 14 15 23 lsatlspsn φNZLSAtomsU
25 1 2 13 14 5 18 21 24 dvh4dimat φpLSAtomsU¬pNXLSSumUNYLSSumUNZ
26 15 3ad2ant1 φpLSAtomsU¬pNXLSSumUNYLSSumUNZULMod
27 simp2 φpLSAtomsU¬pNXLSSumUNYLSSumUNZpLSAtomsU
28 3 4 14 islsati ULModpLSAtomsUzVp=Nz
29 26 27 28 syl2anc φpLSAtomsU¬pNXLSSumUNYLSSumUNZzVp=Nz
30 simp2 φp=NzzVp=Nz
31 15 3ad2ant1 φp=NzzVULMod
32 6 3ad2ant1 φp=NzzVXV
33 7 3ad2ant1 φp=NzzVYV
34 3 4 13 31 32 33 lsmpr φp=NzzVNXY=NXLSSumUNY
35 34 oveq1d φp=NzzVNXYLSSumUNZ=NXLSSumUNYLSSumUNZ
36 prssi XVYVXYV
37 6 7 36 syl2anc φXYV
38 37 3ad2ant1 φp=NzzVXYV
39 8 snssd φZV
40 39 3ad2ant1 φp=NzzVZV
41 3 4 13 lsmsp2 ULModXYVZVNXYLSSumUNZ=NXYZ
42 31 38 40 41 syl3anc φp=NzzVNXYLSSumUNZ=NXYZ
43 35 42 eqtr3d φp=NzzVNXLSSumUNYLSSumUNZ=NXYZ
44 30 43 sseq12d φp=NzzVpNXLSSumUNYLSSumUNZNzNXYZ
45 eqid LSubSpU=LSubSpU
46 37 39 unssd φXYZV
47 3 45 4 lspcl ULModXYZVNXYZLSubSpU
48 15 46 47 syl2anc φNXYZLSubSpU
49 48 3ad2ant1 φp=NzzVNXYZLSubSpU
50 simp3 φp=NzzVzV
51 3 45 4 31 49 50 lspsnel5 φp=NzzVzNXYZNzNXYZ
52 44 51 bitr4d φp=NzzVpNXLSSumUNYLSSumUNZzNXYZ
53 df-tp XYZ=XYZ
54 53 fveq2i NXYZ=NXYZ
55 54 eleq2i zNXYZzNXYZ
56 52 55 bitr4di φp=NzzVpNXLSSumUNYLSSumUNZzNXYZ
57 56 notbid φp=NzzV¬pNXLSSumUNYLSSumUNZ¬zNXYZ
58 57 biimpd φp=NzzV¬pNXLSSumUNYLSSumUNZ¬zNXYZ
59 58 3exp φp=NzzV¬pNXLSSumUNYLSSumUNZ¬zNXYZ
60 59 com24 φ¬pNXLSSumUNYLSSumUNZzVp=Nz¬zNXYZ
61 60 a1d φpLSAtomsU¬pNXLSSumUNYLSSumUNZzVp=Nz¬zNXYZ
62 61 3imp φpLSAtomsU¬pNXLSSumUNYLSSumUNZzVp=Nz¬zNXYZ
63 62 reximdvai φpLSAtomsU¬pNXLSSumUNYLSSumUNZzVp=NzzV¬zNXYZ
64 29 63 mpd φpLSAtomsU¬pNXLSSumUNYLSSumUNZzV¬zNXYZ
65 64 rexlimdv3a φpLSAtomsU¬pNXLSSumUNYLSSumUNZzV¬zNXYZ
66 25 65 mpd φzV¬zNXYZ