Metamath Proof Explorer


Theorem dvh2dimatN

Description: Given an atom, there exists another. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh4dimat.h H = LHyp K
dvh4dimat.u U = DVecH K W
dvh2dimat.a A = LSAtoms U
dvh2dimat.k φ K HL W H
dvh2dimat.p φ P A
Assertion dvh2dimatN φ s A s P

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H = LHyp K
2 dvh4dimat.u U = DVecH K W
3 dvh2dimat.a A = LSAtoms U
4 dvh2dimat.k φ K HL W H
5 dvh2dimat.p φ P A
6 eqid LSSum U = LSSum U
7 1 2 6 3 4 5 5 dvh3dimatN φ s A ¬ s P LSSum U P
8 1 2 4 dvhlmod φ U LMod
9 eqid LSubSp U = LSubSp U
10 9 3 8 5 lsatlssel φ P LSubSp U
11 9 lsssubg U LMod P LSubSp U P SubGrp U
12 8 10 11 syl2anc φ P SubGrp U
13 6 lsmidm P SubGrp U P LSSum U P = P
14 12 13 syl φ P LSSum U P = P
15 14 sseq2d φ s P LSSum U P s P
16 15 adantr φ s A s P LSSum U P s P
17 1 2 4 dvhlvec φ U LVec
18 17 adantr φ s A U LVec
19 simpr φ s A s A
20 5 adantr φ s A P A
21 3 18 19 20 lsatcmp φ s A s P s = P
22 16 21 bitrd φ s A s P LSSum U P s = P
23 22 necon3bbid φ s A ¬ s P LSSum U P s P
24 23 rexbidva φ s A ¬ s P LSSum U P s A s P
25 7 24 mpbid φ s A s P