Metamath Proof Explorer


Theorem dvh3dimatN

Description: There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh4dimat.h H=LHypK
dvh4dimat.u U=DVecHKW
dvh3dimat.s ˙=LSSumU
dvh3dimat.a A=LSAtomsU
dvh3dimat.k φKHLWH
dvh3dimat.p φPA
dvh3dimat.q φQA
Assertion dvh3dimatN φsA¬sP˙Q

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H=LHypK
2 dvh4dimat.u U=DVecHKW
3 dvh3dimat.s ˙=LSSumU
4 dvh3dimat.a A=LSAtomsU
5 dvh3dimat.k φKHLWH
6 dvh3dimat.p φPA
7 dvh3dimat.q φQA
8 1 2 3 4 5 6 6 7 dvh4dimat φsA¬sP˙P˙Q
9 1 2 5 dvhlmod φULMod
10 eqid LSubSpU=LSubSpU
11 10 4 9 6 lsatlssel φPLSubSpU
12 10 lsssubg ULModPLSubSpUPSubGrpU
13 9 11 12 syl2anc φPSubGrpU
14 3 lsmidm PSubGrpUP˙P=P
15 13 14 syl φP˙P=P
16 15 oveq1d φP˙P˙Q=P˙Q
17 16 sseq2d φsP˙P˙QsP˙Q
18 17 notbid φ¬sP˙P˙Q¬sP˙Q
19 18 rexbidv φsA¬sP˙P˙QsA¬sP˙Q
20 8 19 mpbid φsA¬sP˙Q