Metamath Proof Explorer


Theorem dvh2dimatN

Description: Given an atom, there exists another. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh4dimat.h
|- H = ( LHyp ` K )
dvh4dimat.u
|- U = ( ( DVecH ` K ) ` W )
dvh2dimat.a
|- A = ( LSAtoms ` U )
dvh2dimat.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dvh2dimat.p
|- ( ph -> P e. A )
Assertion dvh2dimatN
|- ( ph -> E. s e. A s =/= P )

Proof

Step Hyp Ref Expression
1 dvh4dimat.h
 |-  H = ( LHyp ` K )
2 dvh4dimat.u
 |-  U = ( ( DVecH ` K ) ` W )
3 dvh2dimat.a
 |-  A = ( LSAtoms ` U )
4 dvh2dimat.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
5 dvh2dimat.p
 |-  ( ph -> P e. A )
6 eqid
 |-  ( LSSum ` U ) = ( LSSum ` U )
7 1 2 6 3 4 5 5 dvh3dimatN
 |-  ( ph -> E. s e. A -. s C_ ( P ( LSSum ` U ) P ) )
8 1 2 4 dvhlmod
 |-  ( ph -> U e. LMod )
9 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
10 9 3 8 5 lsatlssel
 |-  ( ph -> P e. ( LSubSp ` U ) )
11 9 lsssubg
 |-  ( ( U e. LMod /\ P e. ( LSubSp ` U ) ) -> P e. ( SubGrp ` U ) )
12 8 10 11 syl2anc
 |-  ( ph -> P e. ( SubGrp ` U ) )
13 6 lsmidm
 |-  ( P e. ( SubGrp ` U ) -> ( P ( LSSum ` U ) P ) = P )
14 12 13 syl
 |-  ( ph -> ( P ( LSSum ` U ) P ) = P )
15 14 sseq2d
 |-  ( ph -> ( s C_ ( P ( LSSum ` U ) P ) <-> s C_ P ) )
16 15 adantr
 |-  ( ( ph /\ s e. A ) -> ( s C_ ( P ( LSSum ` U ) P ) <-> s C_ P ) )
17 1 2 4 dvhlvec
 |-  ( ph -> U e. LVec )
18 17 adantr
 |-  ( ( ph /\ s e. A ) -> U e. LVec )
19 simpr
 |-  ( ( ph /\ s e. A ) -> s e. A )
20 5 adantr
 |-  ( ( ph /\ s e. A ) -> P e. A )
21 3 18 19 20 lsatcmp
 |-  ( ( ph /\ s e. A ) -> ( s C_ P <-> s = P ) )
22 16 21 bitrd
 |-  ( ( ph /\ s e. A ) -> ( s C_ ( P ( LSSum ` U ) P ) <-> s = P ) )
23 22 necon3bbid
 |-  ( ( ph /\ s e. A ) -> ( -. s C_ ( P ( LSSum ` U ) P ) <-> s =/= P ) )
24 23 rexbidva
 |-  ( ph -> ( E. s e. A -. s C_ ( P ( LSSum ` U ) P ) <-> E. s e. A s =/= P ) )
25 7 24 mpbid
 |-  ( ph -> E. s e. A s =/= P )