| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvh4dimat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dvh4dimat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dvh4dimat.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 4 |
|
dvh4dimat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 5 |
|
dvh4dimat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
dvh4dimat.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 7 |
|
dvh4dimat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 8 |
|
dvh4dimat.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
| 9 |
5
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 10 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 11 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 12 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 13 |
5 6 12
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 14 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 15 |
5 7 14
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 16 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 17 |
5 8 16
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 18 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 19 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 20 |
18 19 10
|
3dim3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) |
| 21 |
9 13 15 17 20
|
syl13anc |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) |
| 22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 23 |
1 2 11 4
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 24 |
5 6 23
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 25 |
1 11 2 3 4 5 24 7
|
dihsmatrn |
⊢ ( 𝜑 → ( 𝑃 ⊕ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑃 ⊕ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 27 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑅 ∈ 𝐴 ) |
| 28 |
18 1 11 2 3 4 22 26 27
|
dihjat4 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ⊕ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
| 29 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑄 ∈ 𝐴 ) |
| 31 |
18 1 11 2 3 4 22 29 30
|
dihjat6 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ⊕ 𝑄 ) ) = ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) |
| 32 |
31
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ⊕ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
| 33 |
28 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
| 34 |
33
|
sseq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 36 |
35 10
|
atbase |
⊢ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
9
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
| 39 |
35 18 10
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 40 |
9 13 15 39
|
syl3anc |
⊢ ( 𝜑 → ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 41 |
35 10
|
atbase |
⊢ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 42 |
17 41
|
syl |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
35 18
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 44 |
38 40 42 43
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 46 |
35 19 1 11
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ↔ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
| 47 |
22 37 45 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ↔ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
| 48 |
34 47
|
bitr2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
| 49 |
48
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
| 50 |
49
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
| 51 |
21 50
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) |
| 52 |
10 1 2 11 4
|
dihatlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ 𝐴 ) |
| 53 |
5 52
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ 𝐴 ) |
| 54 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 55 |
5 54
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 56 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 57 |
1 2 11 4
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 58 |
5 57
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 59 |
1 11
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) = 𝑠 ) |
| 60 |
56 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) = 𝑠 ) |
| 61 |
60
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑟 = ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) ) |
| 63 |
62
|
rspceeqv |
⊢ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ) |
| 64 |
55 61 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ) |
| 65 |
|
sseq1 |
⊢ ( 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) → ( 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
| 66 |
65
|
notbid |
⊢ ( 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) → ( ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ) → ( ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
| 68 |
53 64 67
|
rexxfrd |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
| 69 |
51 68
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) |