Step |
Hyp |
Ref |
Expression |
1 |
|
dvh4dimat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvh4dimat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvh4dimat.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
4 |
|
dvh4dimat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
dvh4dimat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
dvh4dimat.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
7 |
|
dvh4dimat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
8 |
|
dvh4dimat.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
9 |
5
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
10 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ) |
13 |
5 6 12
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ) |
14 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
15 |
5 7 14
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
16 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) ) |
17 |
5 8 16
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) ) |
18 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
19 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
20 |
18 19 10
|
3dim3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) |
21 |
9 13 15 17 20
|
syl13anc |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) |
22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
1 2 11 4
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
24 |
5 6 23
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
25 |
1 11 2 3 4 5 24 7
|
dihsmatrn |
⊢ ( 𝜑 → ( 𝑃 ⊕ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑃 ⊕ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
27 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑅 ∈ 𝐴 ) |
28 |
18 1 11 2 3 4 22 26 27
|
dihjat4 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ⊕ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
29 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑄 ∈ 𝐴 ) |
31 |
18 1 11 2 3 4 22 29 30
|
dihjat6 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ⊕ 𝑄 ) ) = ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) |
32 |
31
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ⊕ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
33 |
28 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
34 |
33
|
sseq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
36 |
35 10
|
atbase |
⊢ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
38 |
9
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
39 |
35 18 10
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
9 13 15 39
|
syl3anc |
⊢ ( 𝜑 → ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
41 |
35 10
|
atbase |
⊢ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
17 41
|
syl |
⊢ ( 𝜑 → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
35 18
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) |
44 |
38 40 42 43
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
35 19 1 11
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ↔ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
47 |
22 37 45 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ↔ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) |
48 |
34 47
|
bitr2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
49 |
48
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
50 |
49
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
51 |
21 50
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) |
52 |
10 1 2 11 4
|
dihatlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ 𝐴 ) |
53 |
5 52
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ 𝐴 ) |
54 |
10 1 2 11 4
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) ) |
55 |
5 54
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) ) |
56 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
57 |
1 2 11 4
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
58 |
5 57
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
59 |
1 11
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) = 𝑠 ) |
60 |
56 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) = 𝑠 ) |
61 |
60
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑟 = ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) ) |
63 |
62
|
rspceeqv |
⊢ ( ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ) |
64 |
55 61 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ) |
65 |
|
sseq1 |
⊢ ( 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) → ( 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
66 |
65
|
notbid |
⊢ ( 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) → ( ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ) → ( ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
68 |
53 64 67
|
rexxfrd |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ↔ ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) ) |
69 |
51 68
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑄 ) ⊕ 𝑅 ) ) |