Metamath Proof Explorer


Theorem dvh4dimat

Description: There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh4dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
dvh4dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvh4dimat.s = ( LSSum ‘ 𝑈 )
dvh4dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dvh4dimat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dvh4dimat.p ( 𝜑𝑃𝐴 )
dvh4dimat.q ( 𝜑𝑄𝐴 )
dvh4dimat.r ( 𝜑𝑅𝐴 )
Assertion dvh4dimat ( 𝜑 → ∃ 𝑠𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) )

Proof

Step Hyp Ref Expression
1 dvh4dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvh4dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dvh4dimat.s = ( LSSum ‘ 𝑈 )
4 dvh4dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
5 dvh4dimat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 dvh4dimat.p ( 𝜑𝑃𝐴 )
7 dvh4dimat.q ( 𝜑𝑄𝐴 )
8 dvh4dimat.r ( 𝜑𝑅𝐴 )
9 5 simpld ( 𝜑𝐾 ∈ HL )
10 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
11 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
12 10 1 2 11 4 dihlatat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) )
13 5 6 12 syl2anc ( 𝜑 → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) )
14 10 1 2 11 4 dihlatat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) )
15 5 7 14 syl2anc ( 𝜑 → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) )
16 10 1 2 11 4 dihlatat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑅𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) )
17 5 8 16 syl2anc ( 𝜑 → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) )
18 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
19 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
20 18 19 10 3dim3 ( ( 𝐾 ∈ HL ∧ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) )
21 9 13 15 17 20 syl13anc ( 𝜑 → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) )
22 5 adantr ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
23 1 2 11 4 dih1dimat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴 ) → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
24 5 6 23 syl2anc ( 𝜑𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
25 1 11 2 3 4 5 24 7 dihsmatrn ( 𝜑 → ( 𝑃 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
26 25 adantr ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑃 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
27 8 adantr ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑅𝐴 )
28 18 1 11 2 3 4 22 26 27 dihjat4 ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) )
29 24 adantr ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑃 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
30 7 adantr ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑄𝐴 )
31 18 1 11 2 3 4 22 29 30 dihjat6 ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) = ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) )
32 31 fvoveq1d ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) )
33 28 32 eqtrd ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) )
34 33 sseq2d ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ) )
35 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
36 35 10 atbase ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) → 𝑟 ∈ ( Base ‘ 𝐾 ) )
37 36 adantl ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) )
38 9 hllatd ( 𝜑𝐾 ∈ Lat )
39 35 18 10 hlatjcl ( ( 𝐾 ∈ HL ∧ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
40 9 13 15 39 syl3anc ( 𝜑 → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
41 35 10 atbase ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Atoms ‘ 𝐾 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
42 17 41 syl ( 𝜑 → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
43 35 18 latjcl ( ( 𝐾 ∈ Lat ∧ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) )
44 38 40 42 43 syl3anc ( 𝜑 → ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) )
45 44 adantr ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) )
46 35 19 1 11 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ↔ 𝑟 ( le ‘ 𝐾 ) ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) )
47 22 37 45 46 syl3anc ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) ↔ 𝑟 ( le ‘ 𝐾 ) ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ) )
48 34 47 bitr2d ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑟 ( le ‘ 𝐾 ) ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ) )
49 48 notbid ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ) )
50 49 rexbidva ( 𝜑 → ( ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑟 ( le ‘ 𝐾 ) ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ( join ‘ 𝐾 ) ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑅 ) ) ↔ ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ) )
51 21 50 mpbid ( 𝜑 → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) )
52 10 1 2 11 4 dihatlat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ 𝐴 )
53 5 52 sylan ( ( 𝜑𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ 𝐴 )
54 10 1 2 11 4 dihlatat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) )
55 5 54 sylan ( ( 𝜑𝑠𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) )
56 5 adantr ( ( 𝜑𝑠𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
57 1 2 11 4 dih1dimat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐴 ) → 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
58 5 57 sylan ( ( 𝜑𝑠𝐴 ) → 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
59 1 11 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) = 𝑠 )
60 56 58 59 syl2anc ( ( 𝜑𝑠𝐴 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) = 𝑠 )
61 60 eqcomd ( ( 𝜑𝑠𝐴 ) → 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) )
62 fveq2 ( 𝑟 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) )
63 62 rspceeqv ( ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑠 ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) )
64 55 61 63 syl2anc ( ( 𝜑𝑠𝐴 ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) )
65 sseq1 ( 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) → ( 𝑠 ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ↔ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ) )
66 65 notbid ( 𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) → ( ¬ 𝑠 ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ) )
67 66 adantl ( ( 𝜑𝑠 = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ) → ( ¬ 𝑠 ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ↔ ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ) )
68 53 64 67 rexxfrd ( 𝜑 → ( ∃ 𝑠𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ↔ ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ¬ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) ) )
69 51 68 mpbird ( 𝜑 → ∃ 𝑠𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 𝑄 ) 𝑅 ) )