Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat6.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
dihjat6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihjat6.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihjat6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihjat6.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
6 |
|
dihjat6.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
7 |
|
dihjat6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dihjat6.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
9 |
|
dihjat6.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
10 |
1 2 3 4 5 6 7 8 9
|
dihjat4 |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑄 ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑋 ⊕ 𝑄 ) ) = ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) ) |
12 |
7
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
13 |
12
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
15 |
14 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
7 8 15
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
2 4 3 6
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ran 𝐼 ) |
18 |
7 9 17
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ran 𝐼 ) |
19 |
14 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
7 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
14 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
13 16 20 21
|
syl3anc |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
14 2 3
|
dihcnvid1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) = ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) |
24 |
7 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) = ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) |
25 |
11 24
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑋 ⊕ 𝑄 ) ) = ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) |