Metamath Proof Explorer


Theorem dihjat6

Description: Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dihjat6.j = ( join ‘ 𝐾 )
dihjat6.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjat6.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihjat6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjat6.s = ( LSSum ‘ 𝑈 )
dihjat6.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dihjat6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihjat6.x ( 𝜑𝑋 ∈ ran 𝐼 )
dihjat6.q ( 𝜑𝑄𝐴 )
Assertion dihjat6 ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑄 ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dihjat6.j = ( join ‘ 𝐾 )
2 dihjat6.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihjat6.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dihjat6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dihjat6.s = ( LSSum ‘ 𝑈 )
6 dihjat6.a 𝐴 = ( LSAtoms ‘ 𝑈 )
7 dihjat6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 dihjat6.x ( 𝜑𝑋 ∈ ran 𝐼 )
9 dihjat6.q ( 𝜑𝑄𝐴 )
10 1 2 3 4 5 6 7 8 9 dihjat4 ( 𝜑 → ( 𝑋 𝑄 ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) ) )
11 10 fveq2d ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑄 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) ) ) )
12 7 simpld ( 𝜑𝐾 ∈ HL )
13 12 hllatd ( 𝜑𝐾 ∈ Lat )
14 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
15 14 2 3 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
16 7 8 15 syl2anc ( 𝜑 → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
17 2 4 3 6 dih1dimat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) → 𝑄 ∈ ran 𝐼 )
18 7 9 17 syl2anc ( 𝜑𝑄 ∈ ran 𝐼 )
19 14 2 3 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄 ∈ ran 𝐼 ) → ( 𝐼𝑄 ) ∈ ( Base ‘ 𝐾 ) )
20 7 18 19 syl2anc ( 𝜑 → ( 𝐼𝑄 ) ∈ ( Base ‘ 𝐾 ) )
21 14 1 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
22 13 16 20 21 syl3anc ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
23 14 2 3 dihcnvid1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) )
24 7 22 23 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) )
25 11 24 eqtrd ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑄 ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑄 ) ) )