| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihsmsnrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dihsmsnrn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dihsmsnrn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dihsmsnrn.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 5 |
|
dihsmsnrn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 6 |
|
dihsmsnrn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dihsmsnrn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
dihsmsnrn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
dihsmsnrn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 10 |
1 2 3 5 6
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 11 |
7 8 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 12 |
1 2 3 4 5 6 7 11 9
|
dihsmsprn |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |