Description: The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihsmsnrn.h | |- H = ( LHyp ` K ) |
|
dihsmsnrn.u | |- U = ( ( DVecH ` K ) ` W ) |
||
dihsmsnrn.v | |- V = ( Base ` U ) |
||
dihsmsnrn.p | |- .(+) = ( LSSum ` U ) |
||
dihsmsnrn.n | |- N = ( LSpan ` U ) |
||
dihsmsnrn.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
dihsmsnrn.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
dihsmsnrn.x | |- ( ph -> X e. V ) |
||
dihsmsnrn.y | |- ( ph -> Y e. V ) |
||
Assertion | dihsmsnrn | |- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) e. ran I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihsmsnrn.h | |- H = ( LHyp ` K ) |
|
2 | dihsmsnrn.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | dihsmsnrn.v | |- V = ( Base ` U ) |
|
4 | dihsmsnrn.p | |- .(+) = ( LSSum ` U ) |
|
5 | dihsmsnrn.n | |- N = ( LSpan ` U ) |
|
6 | dihsmsnrn.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
7 | dihsmsnrn.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
8 | dihsmsnrn.x | |- ( ph -> X e. V ) |
|
9 | dihsmsnrn.y | |- ( ph -> Y e. V ) |
|
10 | 1 2 3 5 6 | dihlsprn | |- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran I ) |
11 | 7 8 10 | syl2anc | |- ( ph -> ( N ` { X } ) e. ran I ) |
12 | 1 2 3 4 5 6 7 11 9 | dihsmsprn | |- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) e. ran I ) |