Metamath Proof Explorer


Theorem dihsmsnrn

Description: The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses dihsmsnrn.h
|- H = ( LHyp ` K )
dihsmsnrn.u
|- U = ( ( DVecH ` K ) ` W )
dihsmsnrn.v
|- V = ( Base ` U )
dihsmsnrn.p
|- .(+) = ( LSSum ` U )
dihsmsnrn.n
|- N = ( LSpan ` U )
dihsmsnrn.i
|- I = ( ( DIsoH ` K ) ` W )
dihsmsnrn.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dihsmsnrn.x
|- ( ph -> X e. V )
dihsmsnrn.y
|- ( ph -> Y e. V )
Assertion dihsmsnrn
|- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) e. ran I )

Proof

Step Hyp Ref Expression
1 dihsmsnrn.h
 |-  H = ( LHyp ` K )
2 dihsmsnrn.u
 |-  U = ( ( DVecH ` K ) ` W )
3 dihsmsnrn.v
 |-  V = ( Base ` U )
4 dihsmsnrn.p
 |-  .(+) = ( LSSum ` U )
5 dihsmsnrn.n
 |-  N = ( LSpan ` U )
6 dihsmsnrn.i
 |-  I = ( ( DIsoH ` K ) ` W )
7 dihsmsnrn.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 dihsmsnrn.x
 |-  ( ph -> X e. V )
9 dihsmsnrn.y
 |-  ( ph -> Y e. V )
10 1 2 3 5 6 dihlsprn
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran I )
11 7 8 10 syl2anc
 |-  ( ph -> ( N ` { X } ) e. ran I )
12 1 2 3 4 5 6 7 11 9 dihsmsprn
 |-  ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) e. ran I )