| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihsmatrn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihsmatrn.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 3 |
|
dihsmatrn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dihsmatrn.p |
|- .(+) = ( LSSum ` U ) |
| 5 |
|
dihsmatrn.a |
|- A = ( LSAtoms ` U ) |
| 6 |
|
dihsmatrn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
dihsmatrn.x |
|- ( ph -> X e. ran I ) |
| 8 |
|
dihsmatrn.q |
|- ( ph -> Q e. A ) |
| 9 |
|
eqid |
|- ( ( joinH ` K ) ` W ) = ( ( joinH ` K ) ` W ) |
| 10 |
1 2 9 3 4 5 6 7 8
|
dihjat2 |
|- ( ph -> ( X ( ( joinH ` K ) ` W ) Q ) = ( X .(+) Q ) ) |
| 11 |
10
|
eqcomd |
|- ( ph -> ( X .(+) Q ) = ( X ( ( joinH ` K ) ` W ) Q ) ) |
| 12 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 13 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 14 |
1 3 2 13
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) ) |
| 15 |
6 7 14
|
syl2anc |
|- ( ph -> X e. ( LSubSp ` U ) ) |
| 16 |
1 3 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 17 |
13 5 16 8
|
lsatlssel |
|- ( ph -> Q e. ( LSubSp ` U ) ) |
| 18 |
1 3 12 13 4 2 9 6 15 17
|
djhlsmcl |
|- ( ph -> ( ( X .(+) Q ) e. ran I <-> ( X .(+) Q ) = ( X ( ( joinH ` K ) ` W ) Q ) ) ) |
| 19 |
11 18
|
mpbird |
|- ( ph -> ( X .(+) Q ) e. ran I ) |