Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat2.h |
|- H = ( LHyp ` K ) |
2 |
|
dihjat2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
3 |
|
dihjat2.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
4 |
|
dihjat2.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dihjat2.p |
|- .(+) = ( LSSum ` U ) |
6 |
|
dihjat2.a |
|- A = ( LSAtoms ` U ) |
7 |
|
dihjat2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
dihjat2.x |
|- ( ph -> X e. ran I ) |
9 |
|
dihjat2.q |
|- ( ph -> Q e. A ) |
10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
11 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
12 |
7
|
adantr |
|- ( ( ph /\ v e. ( Base ` U ) ) -> ( K e. HL /\ W e. H ) ) |
13 |
8
|
adantr |
|- ( ( ph /\ v e. ( Base ` U ) ) -> X e. ran I ) |
14 |
|
simpr |
|- ( ( ph /\ v e. ( Base ` U ) ) -> v e. ( Base ` U ) ) |
15 |
1 4 10 5 11 2 3 12 13 14
|
dihjat1 |
|- ( ( ph /\ v e. ( Base ` U ) ) -> ( X .\/ ( ( LSpan ` U ) ` { v } ) ) = ( X .(+) ( ( LSpan ` U ) ` { v } ) ) ) |
16 |
15
|
adantr |
|- ( ( ( ph /\ v e. ( Base ` U ) ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> ( X .\/ ( ( LSpan ` U ) ` { v } ) ) = ( X .(+) ( ( LSpan ` U ) ` { v } ) ) ) |
17 |
|
oveq2 |
|- ( Q = ( ( LSpan ` U ) ` { v } ) -> ( X .\/ Q ) = ( X .\/ ( ( LSpan ` U ) ` { v } ) ) ) |
18 |
17
|
adantl |
|- ( ( ( ph /\ v e. ( Base ` U ) ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> ( X .\/ Q ) = ( X .\/ ( ( LSpan ` U ) ` { v } ) ) ) |
19 |
|
oveq2 |
|- ( Q = ( ( LSpan ` U ) ` { v } ) -> ( X .(+) Q ) = ( X .(+) ( ( LSpan ` U ) ` { v } ) ) ) |
20 |
19
|
adantl |
|- ( ( ( ph /\ v e. ( Base ` U ) ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> ( X .(+) Q ) = ( X .(+) ( ( LSpan ` U ) ` { v } ) ) ) |
21 |
16 18 20
|
3eqtr4d |
|- ( ( ( ph /\ v e. ( Base ` U ) ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> ( X .\/ Q ) = ( X .(+) Q ) ) |
22 |
1 4 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
23 |
10 11 6
|
islsati |
|- ( ( U e. LMod /\ Q e. A ) -> E. v e. ( Base ` U ) Q = ( ( LSpan ` U ) ` { v } ) ) |
24 |
22 9 23
|
syl2anc |
|- ( ph -> E. v e. ( Base ` U ) Q = ( ( LSpan ` U ) ` { v } ) ) |
25 |
21 24
|
r19.29a |
|- ( ph -> ( X .\/ Q ) = ( X .(+) Q ) ) |