| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjat1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihjat1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dihjat1.v |
|- V = ( Base ` U ) |
| 4 |
|
dihjat1.p |
|- .(+) = ( LSSum ` U ) |
| 5 |
|
dihjat1.n |
|- N = ( LSpan ` U ) |
| 6 |
|
dihjat1.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
dihjat1.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
| 8 |
|
dihjat1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
dihjat1.x |
|- ( ph -> X e. ran I ) |
| 10 |
|
dihjat1.q |
|- ( ph -> T e. V ) |
| 11 |
|
sneq |
|- ( T = ( 0g ` U ) -> { T } = { ( 0g ` U ) } ) |
| 12 |
11
|
fveq2d |
|- ( T = ( 0g ` U ) -> ( N ` { T } ) = ( N ` { ( 0g ` U ) } ) ) |
| 13 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 15 |
14 5
|
lspsn0 |
|- ( U e. LMod -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
| 16 |
13 15
|
syl |
|- ( ph -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
| 17 |
12 16
|
sylan9eqr |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( N ` { T } ) = { ( 0g ` U ) } ) |
| 18 |
17
|
oveq2d |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .\/ ( N ` { T } ) ) = ( X .\/ { ( 0g ` U ) } ) ) |
| 19 |
1 2 14 6 7 8 9
|
djh01 |
|- ( ph -> ( X .\/ { ( 0g ` U ) } ) = X ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .\/ { ( 0g ` U ) } ) = X ) |
| 21 |
17
|
oveq2d |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .(+) ( N ` { T } ) ) = ( X .(+) { ( 0g ` U ) } ) ) |
| 22 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 23 |
1 2 6 22
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) ) |
| 24 |
8 9 23
|
syl2anc |
|- ( ph -> X e. ( LSubSp ` U ) ) |
| 25 |
22
|
lsssubg |
|- ( ( U e. LMod /\ X e. ( LSubSp ` U ) ) -> X e. ( SubGrp ` U ) ) |
| 26 |
13 24 25
|
syl2anc |
|- ( ph -> X e. ( SubGrp ` U ) ) |
| 27 |
14 4
|
lsm01 |
|- ( X e. ( SubGrp ` U ) -> ( X .(+) { ( 0g ` U ) } ) = X ) |
| 28 |
26 27
|
syl |
|- ( ph -> ( X .(+) { ( 0g ` U ) } ) = X ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .(+) { ( 0g ` U ) } ) = X ) |
| 30 |
21 29
|
eqtr2d |
|- ( ( ph /\ T = ( 0g ` U ) ) -> X = ( X .(+) ( N ` { T } ) ) ) |
| 31 |
18 20 30
|
3eqtrd |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |
| 32 |
8
|
adantr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 33 |
9
|
adantr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> X e. ran I ) |
| 34 |
10
|
anim1i |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( T e. V /\ T =/= ( 0g ` U ) ) ) |
| 35 |
|
eldifsn |
|- ( T e. ( V \ { ( 0g ` U ) } ) <-> ( T e. V /\ T =/= ( 0g ` U ) ) ) |
| 36 |
34 35
|
sylibr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> T e. ( V \ { ( 0g ` U ) } ) ) |
| 37 |
1 2 3 4 5 6 7 32 33 14 36
|
dihjat1lem |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |
| 38 |
31 37
|
pm2.61dane |
|- ( ph -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |