Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat1.h |
|- H = ( LHyp ` K ) |
2 |
|
dihjat1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dihjat1.v |
|- V = ( Base ` U ) |
4 |
|
dihjat1.p |
|- .(+) = ( LSSum ` U ) |
5 |
|
dihjat1.n |
|- N = ( LSpan ` U ) |
6 |
|
dihjat1.i |
|- I = ( ( DIsoH ` K ) ` W ) |
7 |
|
dihjat1.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
8 |
|
dihjat1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dihjat1.x |
|- ( ph -> X e. ran I ) |
10 |
|
dihjat1.q |
|- ( ph -> T e. V ) |
11 |
|
sneq |
|- ( T = ( 0g ` U ) -> { T } = { ( 0g ` U ) } ) |
12 |
11
|
fveq2d |
|- ( T = ( 0g ` U ) -> ( N ` { T } ) = ( N ` { ( 0g ` U ) } ) ) |
13 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
15 |
14 5
|
lspsn0 |
|- ( U e. LMod -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
16 |
13 15
|
syl |
|- ( ph -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
17 |
12 16
|
sylan9eqr |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( N ` { T } ) = { ( 0g ` U ) } ) |
18 |
17
|
oveq2d |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .\/ ( N ` { T } ) ) = ( X .\/ { ( 0g ` U ) } ) ) |
19 |
1 2 14 6 7 8 9
|
djh01 |
|- ( ph -> ( X .\/ { ( 0g ` U ) } ) = X ) |
20 |
19
|
adantr |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .\/ { ( 0g ` U ) } ) = X ) |
21 |
17
|
oveq2d |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .(+) ( N ` { T } ) ) = ( X .(+) { ( 0g ` U ) } ) ) |
22 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
23 |
1 2 6 22
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) ) |
24 |
8 9 23
|
syl2anc |
|- ( ph -> X e. ( LSubSp ` U ) ) |
25 |
22
|
lsssubg |
|- ( ( U e. LMod /\ X e. ( LSubSp ` U ) ) -> X e. ( SubGrp ` U ) ) |
26 |
13 24 25
|
syl2anc |
|- ( ph -> X e. ( SubGrp ` U ) ) |
27 |
14 4
|
lsm01 |
|- ( X e. ( SubGrp ` U ) -> ( X .(+) { ( 0g ` U ) } ) = X ) |
28 |
26 27
|
syl |
|- ( ph -> ( X .(+) { ( 0g ` U ) } ) = X ) |
29 |
28
|
adantr |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .(+) { ( 0g ` U ) } ) = X ) |
30 |
21 29
|
eqtr2d |
|- ( ( ph /\ T = ( 0g ` U ) ) -> X = ( X .(+) ( N ` { T } ) ) ) |
31 |
18 20 30
|
3eqtrd |
|- ( ( ph /\ T = ( 0g ` U ) ) -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |
32 |
8
|
adantr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
33 |
9
|
adantr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> X e. ran I ) |
34 |
10
|
anim1i |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( T e. V /\ T =/= ( 0g ` U ) ) ) |
35 |
|
eldifsn |
|- ( T e. ( V \ { ( 0g ` U ) } ) <-> ( T e. V /\ T =/= ( 0g ` U ) ) ) |
36 |
34 35
|
sylibr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> T e. ( V \ { ( 0g ` U ) } ) ) |
37 |
1 2 3 4 5 6 7 32 33 14 36
|
dihjat1lem |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |
38 |
31 37
|
pm2.61dane |
|- ( ph -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |