| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djh01.h |
|- H = ( LHyp ` K ) |
| 2 |
|
djh01.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
djh01.o |
|- .0. = ( 0g ` U ) |
| 4 |
|
djh01.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 5 |
|
djh01.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
| 6 |
|
djh01.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
djh01.x |
|- ( ph -> X e. ran I ) |
| 8 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 9 |
1 4 2 3
|
dih0rn |
|- ( ( K e. HL /\ W e. H ) -> { .0. } e. ran I ) |
| 10 |
6 9
|
syl |
|- ( ph -> { .0. } e. ran I ) |
| 11 |
8 1 4 5 6 7 10
|
djhjlj |
|- ( ph -> ( X .\/ { .0. } ) = ( I ` ( ( `' I ` X ) ( join ` K ) ( `' I ` { .0. } ) ) ) ) |
| 12 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 13 |
1 12 4 2 3
|
dih0cnv |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` { .0. } ) = ( 0. ` K ) ) |
| 14 |
6 13
|
syl |
|- ( ph -> ( `' I ` { .0. } ) = ( 0. ` K ) ) |
| 15 |
14
|
oveq2d |
|- ( ph -> ( ( `' I ` X ) ( join ` K ) ( `' I ` { .0. } ) ) = ( ( `' I ` X ) ( join ` K ) ( 0. ` K ) ) ) |
| 16 |
6
|
simpld |
|- ( ph -> K e. HL ) |
| 17 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 18 |
16 17
|
syl |
|- ( ph -> K e. OL ) |
| 19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 20 |
19 1 4
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 21 |
6 7 20
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
| 22 |
19 8 12
|
olj01 |
|- ( ( K e. OL /\ ( `' I ` X ) e. ( Base ` K ) ) -> ( ( `' I ` X ) ( join ` K ) ( 0. ` K ) ) = ( `' I ` X ) ) |
| 23 |
18 21 22
|
syl2anc |
|- ( ph -> ( ( `' I ` X ) ( join ` K ) ( 0. ` K ) ) = ( `' I ` X ) ) |
| 24 |
15 23
|
eqtrd |
|- ( ph -> ( ( `' I ` X ) ( join ` K ) ( `' I ` { .0. } ) ) = ( `' I ` X ) ) |
| 25 |
24
|
fveq2d |
|- ( ph -> ( I ` ( ( `' I ` X ) ( join ` K ) ( `' I ` { .0. } ) ) ) = ( I ` ( `' I ` X ) ) ) |
| 26 |
1 4
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
| 27 |
6 7 26
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` X ) ) = X ) |
| 28 |
11 25 27
|
3eqtrd |
|- ( ph -> ( X .\/ { .0. } ) = X ) |