Metamath Proof Explorer


Theorem djh01

Description: Closed subspace join with zero. (Contributed by NM, 9-Aug-2014)

Ref Expression
Hypotheses djh01.h 𝐻 = ( LHyp ‘ 𝐾 )
djh01.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
djh01.o 0 = ( 0g𝑈 )
djh01.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
djh01.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
djh01.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
djh01.x ( 𝜑𝑋 ∈ ran 𝐼 )
Assertion djh01 ( 𝜑 → ( 𝑋 { 0 } ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 djh01.h 𝐻 = ( LHyp ‘ 𝐾 )
2 djh01.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 djh01.o 0 = ( 0g𝑈 )
4 djh01.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 djh01.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
6 djh01.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 djh01.x ( 𝜑𝑋 ∈ ran 𝐼 )
8 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
9 1 4 2 3 dih0rn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → { 0 } ∈ ran 𝐼 )
10 6 9 syl ( 𝜑 → { 0 } ∈ ran 𝐼 )
11 8 1 4 5 6 7 10 djhjlj ( 𝜑 → ( 𝑋 { 0 } ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( join ‘ 𝐾 ) ( 𝐼 ‘ { 0 } ) ) ) )
12 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
13 1 12 4 2 3 dih0cnv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼 ‘ { 0 } ) = ( 0. ‘ 𝐾 ) )
14 6 13 syl ( 𝜑 → ( 𝐼 ‘ { 0 } ) = ( 0. ‘ 𝐾 ) )
15 14 oveq2d ( 𝜑 → ( ( 𝐼𝑋 ) ( join ‘ 𝐾 ) ( 𝐼 ‘ { 0 } ) ) = ( ( 𝐼𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) )
16 6 simpld ( 𝜑𝐾 ∈ HL )
17 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
18 16 17 syl ( 𝜑𝐾 ∈ OL )
19 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
20 19 1 4 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
21 6 7 20 syl2anc ( 𝜑 → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
22 19 8 12 olj01 ( ( 𝐾 ∈ OL ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( 𝐼𝑋 ) )
23 18 21 22 syl2anc ( 𝜑 → ( ( 𝐼𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( 𝐼𝑋 ) )
24 15 23 eqtrd ( 𝜑 → ( ( 𝐼𝑋 ) ( join ‘ 𝐾 ) ( 𝐼 ‘ { 0 } ) ) = ( 𝐼𝑋 ) )
25 24 fveq2d ( 𝜑 → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( join ‘ 𝐾 ) ( 𝐼 ‘ { 0 } ) ) ) = ( 𝐼 ‘ ( 𝐼𝑋 ) ) )
26 1 4 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
27 6 7 26 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
28 11 25 27 3eqtrd ( 𝜑 → ( 𝑋 { 0 } ) = 𝑋 )