Step |
Hyp |
Ref |
Expression |
1 |
|
djh01.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
djh01.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
djh01.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
4 |
|
djh01.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
djh01.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
djh01.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
djh01.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
8 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
9 |
1 4 2 3
|
dih0rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { 0 } ∈ ran 𝐼 ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → { 0 } ∈ ran 𝐼 ) |
11 |
8 1 4 5 6 7 10
|
djhjlj |
⊢ ( 𝜑 → ( 𝑋 ∨ { 0 } ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ { 0 } ) ) ) ) |
12 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
13 |
1 12 4 2 3
|
dih0cnv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐼 ‘ { 0 } ) = ( 0. ‘ 𝐾 ) ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ { 0 } ) = ( 0. ‘ 𝐾 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ { 0 } ) ) = ( ( ◡ 𝐼 ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) ) |
16 |
6
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
17 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OL ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
19 1 4
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
6 7 20
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
19 8 12
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
23 |
18 21 22
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
24 |
15 23
|
eqtrd |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ { 0 } ) ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ { 0 } ) ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
26 |
1 4
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
27 |
6 7 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
28 |
11 25 27
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 ∨ { 0 } ) = 𝑋 ) |