Step |
Hyp |
Ref |
Expression |
1 |
|
djh01.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
djh01.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
djh01.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
4 |
|
djh01.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
djh01.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
djh01.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
djh01.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
9 |
1 4 2 3
|
dih0rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { 0 } ∈ ran 𝐼 ) |
10 |
1 2 4 8
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 0 } ∈ ran 𝐼 ) → { 0 } ⊆ ( Base ‘ 𝑈 ) ) |
11 |
6 9 10
|
syl2anc2 |
⊢ ( 𝜑 → { 0 } ⊆ ( Base ‘ 𝑈 ) ) |
12 |
1 2 4 8
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
13 |
6 7 12
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
14 |
1 2 8 5 6 11 13
|
djhcom |
⊢ ( 𝜑 → ( { 0 } ∨ 𝑋 ) = ( 𝑋 ∨ { 0 } ) ) |
15 |
1 2 3 4 5 6 7
|
djh01 |
⊢ ( 𝜑 → ( 𝑋 ∨ { 0 } ) = 𝑋 ) |
16 |
14 15
|
eqtrd |
⊢ ( 𝜑 → ( { 0 } ∨ 𝑋 ) = 𝑋 ) |