Metamath Proof Explorer


Theorem djh02

Description: Closed subspace join with zero. (Contributed by NM, 9-Aug-2014)

Ref Expression
Hypotheses djh01.h 𝐻 = ( LHyp ‘ 𝐾 )
djh01.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
djh01.o 0 = ( 0g𝑈 )
djh01.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
djh01.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
djh01.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
djh01.x ( 𝜑𝑋 ∈ ran 𝐼 )
Assertion djh02 ( 𝜑 → ( { 0 } 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 djh01.h 𝐻 = ( LHyp ‘ 𝐾 )
2 djh01.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 djh01.o 0 = ( 0g𝑈 )
4 djh01.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 djh01.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
6 djh01.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 djh01.x ( 𝜑𝑋 ∈ ran 𝐼 )
8 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
9 1 4 2 3 dih0rn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → { 0 } ∈ ran 𝐼 )
10 1 2 4 8 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 0 } ∈ ran 𝐼 ) → { 0 } ⊆ ( Base ‘ 𝑈 ) )
11 6 9 10 syl2anc2 ( 𝜑 → { 0 } ⊆ ( Base ‘ 𝑈 ) )
12 1 2 4 8 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ 𝑈 ) )
13 6 7 12 syl2anc ( 𝜑𝑋 ⊆ ( Base ‘ 𝑈 ) )
14 1 2 8 5 6 11 13 djhcom ( 𝜑 → ( { 0 } 𝑋 ) = ( 𝑋 { 0 } ) )
15 1 2 3 4 5 6 7 djh01 ( 𝜑 → ( 𝑋 { 0 } ) = 𝑋 )
16 14 15 eqtrd ( 𝜑 → ( { 0 } 𝑋 ) = 𝑋 )