Metamath Proof Explorer


Theorem djh02

Description: Closed subspace join with zero. (Contributed by NM, 9-Aug-2014)

Ref Expression
Hypotheses djh01.h H=LHypK
djh01.u U=DVecHKW
djh01.o 0˙=0U
djh01.i I=DIsoHKW
djh01.j ˙=joinHKW
djh01.k φKHLWH
djh01.x φXranI
Assertion djh02 φ0˙˙X=X

Proof

Step Hyp Ref Expression
1 djh01.h H=LHypK
2 djh01.u U=DVecHKW
3 djh01.o 0˙=0U
4 djh01.i I=DIsoHKW
5 djh01.j ˙=joinHKW
6 djh01.k φKHLWH
7 djh01.x φXranI
8 eqid BaseU=BaseU
9 1 4 2 3 dih0rn KHLWH0˙ranI
10 1 2 4 8 dihrnss KHLWH0˙ranI0˙BaseU
11 6 9 10 syl2anc2 φ0˙BaseU
12 1 2 4 8 dihrnss KHLWHXranIXBaseU
13 6 7 12 syl2anc φXBaseU
14 1 2 8 5 6 11 13 djhcom φ0˙˙X=X˙0˙
15 1 2 3 4 5 6 7 djh01 φX˙0˙=X
16 14 15 eqtrd φ0˙˙X=X