| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djh01.h |
|- H = ( LHyp ` K ) |
| 2 |
|
djh01.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
djh01.o |
|- .0. = ( 0g ` U ) |
| 4 |
|
djh01.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 5 |
|
djh01.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
| 6 |
|
djh01.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
djh01.x |
|- ( ph -> X e. ran I ) |
| 8 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 9 |
1 4 2 3
|
dih0rn |
|- ( ( K e. HL /\ W e. H ) -> { .0. } e. ran I ) |
| 10 |
1 2 4 8
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ { .0. } e. ran I ) -> { .0. } C_ ( Base ` U ) ) |
| 11 |
6 9 10
|
syl2anc2 |
|- ( ph -> { .0. } C_ ( Base ` U ) ) |
| 12 |
1 2 4 8
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ ( Base ` U ) ) |
| 13 |
6 7 12
|
syl2anc |
|- ( ph -> X C_ ( Base ` U ) ) |
| 14 |
1 2 8 5 6 11 13
|
djhcom |
|- ( ph -> ( { .0. } .\/ X ) = ( X .\/ { .0. } ) ) |
| 15 |
1 2 3 4 5 6 7
|
djh01 |
|- ( ph -> ( X .\/ { .0. } ) = X ) |
| 16 |
14 15
|
eqtrd |
|- ( ph -> ( { .0. } .\/ X ) = X ) |