Step |
Hyp |
Ref |
Expression |
1 |
|
djhlsmcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
djhlsmcl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
djhlsmcl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
djhlsmcl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
djhlsmcl.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
6 |
|
djhlsmcl.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
djhlsmcl.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
djhlsmcl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
djhlsmcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
10 |
|
djhlsmcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
11 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
3 4
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
13 |
9 12
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → 𝑋 ⊆ 𝑉 ) |
15 |
3 4
|
lssss |
⊢ ( 𝑌 ∈ 𝑆 → 𝑌 ⊆ 𝑉 ) |
16 |
10 15
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑉 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → 𝑌 ⊆ 𝑉 ) |
18 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
1 2 3 18 7
|
djhval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( 𝑋 ∨ 𝑌 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
20 |
11 14 17 19
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋 ∨ 𝑌 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
21 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → 𝑈 ∈ LMod ) |
23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → 𝑋 ∈ 𝑆 ) |
24 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → 𝑌 ∈ 𝑆 ) |
25 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
26 |
4 25 5
|
lsmsp |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ⊕ 𝑌 ) = ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
27 |
22 23 24 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋 ⊕ 𝑌 ) = ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ⊕ 𝑌 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
29 |
13 16
|
unssd |
⊢ ( 𝜑 → ( 𝑋 ∪ 𝑌 ) ⊆ 𝑉 ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋 ∪ 𝑌 ) ⊆ 𝑉 ) |
31 |
1 2 18 3 25 11 30
|
dochocsp |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
32 |
28 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ⊕ 𝑌 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ⊕ 𝑌 ) ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
34 |
1 6 18
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ⊕ 𝑌 ) ) ) = ( 𝑋 ⊕ 𝑌 ) ) |
35 |
8 34
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ⊕ 𝑌 ) ) ) = ( 𝑋 ⊕ 𝑌 ) ) |
36 |
20 33 35
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋 ⊕ 𝑌 ) = ( 𝑋 ∨ 𝑌 ) ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 → ( 𝑋 ⊕ 𝑌 ) = ( 𝑋 ∨ 𝑌 ) ) ) |
38 |
1 6 2 3 7
|
djhcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) ) → ( 𝑋 ∨ 𝑌 ) ∈ ran 𝐼 ) |
39 |
8 13 16 38
|
syl12anc |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) ∈ ran 𝐼 ) |
40 |
|
eleq1a |
⊢ ( ( 𝑋 ∨ 𝑌 ) ∈ ran 𝐼 → ( ( 𝑋 ⊕ 𝑌 ) = ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 ⊕ 𝑌 ) = ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ) ) |
42 |
37 41
|
impbid |
⊢ ( 𝜑 → ( ( 𝑋 ⊕ 𝑌 ) ∈ ran 𝐼 ↔ ( 𝑋 ⊕ 𝑌 ) = ( 𝑋 ∨ 𝑌 ) ) ) |