Metamath Proof Explorer


Theorem djhlsmcl

Description: A closed subspace sum equals subspace join. ( shjshseli analog.) (Contributed by NM, 13-Aug-2014)

Ref Expression
Hypotheses djhlsmcl.h 𝐻 = ( LHyp ‘ 𝐾 )
djhlsmcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
djhlsmcl.v 𝑉 = ( Base ‘ 𝑈 )
djhlsmcl.s 𝑆 = ( LSubSp ‘ 𝑈 )
djhlsmcl.p = ( LSSum ‘ 𝑈 )
djhlsmcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
djhlsmcl.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
djhlsmcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
djhlsmcl.x ( 𝜑𝑋𝑆 )
djhlsmcl.y ( 𝜑𝑌𝑆 )
Assertion djhlsmcl ( 𝜑 → ( ( 𝑋 𝑌 ) ∈ ran 𝐼 ↔ ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 djhlsmcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 djhlsmcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 djhlsmcl.v 𝑉 = ( Base ‘ 𝑈 )
4 djhlsmcl.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 djhlsmcl.p = ( LSSum ‘ 𝑈 )
6 djhlsmcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
7 djhlsmcl.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
8 djhlsmcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 djhlsmcl.x ( 𝜑𝑋𝑆 )
10 djhlsmcl.y ( 𝜑𝑌𝑆 )
11 8 adantr ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 3 4 lssss ( 𝑋𝑆𝑋𝑉 )
13 9 12 syl ( 𝜑𝑋𝑉 )
14 13 adantr ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → 𝑋𝑉 )
15 3 4 lssss ( 𝑌𝑆𝑌𝑉 )
16 10 15 syl ( 𝜑𝑌𝑉 )
17 16 adantr ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → 𝑌𝑉 )
18 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
19 1 2 3 18 7 djhval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋𝑌 ) ) ) )
20 11 14 17 19 syl3anc ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋 𝑌 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋𝑌 ) ) ) )
21 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
22 21 adantr ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → 𝑈 ∈ LMod )
23 9 adantr ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → 𝑋𝑆 )
24 10 adantr ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → 𝑌𝑆 )
25 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
26 4 25 5 lsmsp ( ( 𝑈 ∈ LMod ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 𝑌 ) = ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋𝑌 ) ) )
27 22 23 24 26 syl3anc ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋 𝑌 ) = ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋𝑌 ) ) )
28 27 fveq2d ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 𝑌 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋𝑌 ) ) ) )
29 13 16 unssd ( 𝜑 → ( 𝑋𝑌 ) ⊆ 𝑉 )
30 29 adantr ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋𝑌 ) ⊆ 𝑉 )
31 1 2 18 3 25 11 30 dochocsp ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ ( 𝑋𝑌 ) ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋𝑌 ) ) )
32 28 31 eqtrd ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 𝑌 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋𝑌 ) ) )
33 32 fveq2d ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 𝑌 ) ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋𝑌 ) ) ) )
34 1 6 18 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 𝑌 ) ) ) = ( 𝑋 𝑌 ) )
35 8 34 sylan ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 𝑌 ) ) ) = ( 𝑋 𝑌 ) )
36 20 33 35 3eqtr2rd ( ( 𝜑 ∧ ( 𝑋 𝑌 ) ∈ ran 𝐼 ) → ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) )
37 36 ex ( 𝜑 → ( ( 𝑋 𝑌 ) ∈ ran 𝐼 → ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) ) )
38 1 6 2 3 7 djhcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( 𝑋 𝑌 ) ∈ ran 𝐼 )
39 8 13 16 38 syl12anc ( 𝜑 → ( 𝑋 𝑌 ) ∈ ran 𝐼 )
40 eleq1a ( ( 𝑋 𝑌 ) ∈ ran 𝐼 → ( ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) → ( 𝑋 𝑌 ) ∈ ran 𝐼 ) )
41 39 40 syl ( 𝜑 → ( ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) → ( 𝑋 𝑌 ) ∈ ran 𝐼 ) )
42 37 41 impbid ( 𝜑 → ( ( 𝑋 𝑌 ) ∈ ran 𝐼 ↔ ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) ) )