| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djhcvat42.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
djhcvat42.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
djhcvat42.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
djhcvat42.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 5 |
|
djhcvat42.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 6 |
|
djhcvat42.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
djhcvat42.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
djhcvat42.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
djhcvat42.s |
⊢ ( 𝜑 → 𝑆 ∈ ran 𝐼 ) |
| 10 |
|
djhcvat42.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
djhcvat42.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
8
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 14 |
13 1 6
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
8 9 14
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 17 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
| 18 |
10 17
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 19 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 20 |
19 1 2 3 4 5 6
|
dihlspsnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 21 |
8 16 18 20
|
syl3anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 22 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 23 |
|
eldifsni |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌 ≠ 0 ) |
| 24 |
11 23
|
syl |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 25 |
19 1 2 3 4 5 6
|
dihlspsnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 26 |
8 22 24 25
|
syl3anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 27 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 28 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 29 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 30 |
13 27 28 29 19
|
cvrat42 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ◡ 𝐼 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) ) → ( ( ( ◡ 𝐼 ‘ 𝑆 ) ≠ ( 0. ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) ) |
| 31 |
12 15 21 26 30
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ◡ 𝐼 ‘ 𝑆 ) ≠ ( 0. ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) → ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) ) |
| 32 |
1 29 6 2 3 4 5 8 9
|
dih0sb |
⊢ ( 𝜑 → ( 𝑆 = { 0 } ↔ ( ◡ 𝐼 ‘ 𝑆 ) = ( 0. ‘ 𝐾 ) ) ) |
| 33 |
32
|
necon3bid |
⊢ ( 𝜑 → ( 𝑆 ≠ { 0 } ↔ ( ◡ 𝐼 ‘ 𝑆 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
| 34 |
1 2 3 5 6
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 35 |
8 16 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 36 |
1 2 6 3
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ ran 𝐼 ) → 𝑆 ⊆ 𝑉 ) |
| 37 |
8 9 36
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑉 ) |
| 38 |
1 2 3 5 6
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
| 39 |
8 22 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
| 40 |
1 2 6 3
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 41 |
8 39 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 42 |
1 6 2 3 7
|
djhcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝑉 ∧ ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) ) → ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |
| 43 |
8 37 41 42
|
syl12anc |
⊢ ( 𝜑 → ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |
| 44 |
27 1 6 8 35 43
|
dihcnvord |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 45 |
28 1 6 7 8 9 39
|
djhj |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( ◡ 𝐼 ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 46 |
45
|
breq2d |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 47 |
44 46
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 48 |
33 47
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑆 ≠ { 0 } ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( ( ◡ 𝐼 ‘ 𝑆 ) ≠ ( 0. ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) ) |
| 49 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 50 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑉 ∖ { 0 } ) → 𝑧 ∈ 𝑉 ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ 𝑉 ) |
| 52 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝑉 ∖ { 0 } ) → 𝑧 ≠ 0 ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ≠ 0 ) |
| 54 |
19 1 2 3 4 5 6
|
dihlspsnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 55 |
49 51 53 54
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 56 |
19 1 2 3 4 5 6 8
|
dihatexv2 |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑟 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 57 |
|
breq1 |
⊢ ( 𝑟 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) → ( 𝑟 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ↔ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ) ) |
| 58 |
|
oveq1 |
⊢ ( 𝑟 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) → ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 59 |
58
|
breq2d |
⊢ ( 𝑟 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 60 |
57 59
|
anbi12d |
⊢ ( 𝑟 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) → ( ( 𝑟 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ↔ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ) → ( ( 𝑟 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ↔ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) ) |
| 62 |
55 56 61
|
rexxfr2d |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) ) |
| 63 |
1 2 3 5 6
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑧 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑧 } ) ∈ ran 𝐼 ) |
| 64 |
49 51 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑧 } ) ∈ ran 𝐼 ) |
| 65 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑆 ∈ ran 𝐼 ) |
| 66 |
27 1 6 49 64 65
|
dihcnvord |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ↔ ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑆 ) ) |
| 67 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
| 68 |
28 1 6 7 49 64 67
|
djhj |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ◡ 𝐼 ‘ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 69 |
68
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 70 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑋 ∈ 𝑉 ) |
| 71 |
49 70 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 72 |
1 2 6 3
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ ran 𝐼 ) → ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑉 ) |
| 73 |
49 64 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑉 ) |
| 74 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 75 |
1 6 2 3 7
|
djhcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑉 ∧ ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) ) → ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |
| 76 |
49 73 74 75
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |
| 77 |
27 1 6 49 71 76
|
dihcnvord |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 78 |
69 77
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 79 |
66 78
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ↔ ( ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑆 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 80 |
79
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑧 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑆 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 81 |
62 80
|
bitr2d |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑆 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ∃ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑆 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) ) |
| 82 |
31 48 81
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑆 ≠ { 0 } ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑆 ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑆 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑧 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |