| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjatb.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dihjatb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dihjatb.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dihjatb.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dihjatb.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dihjatb.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 7 |
|
dihjatb.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dihjatb.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
dihjatb.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) |
| 10 |
|
dihjatb.q |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) |
| 11 |
1 3 4 2 5 6 7 8 9 10
|
dih2dimb |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ⊆ ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 13 |
9
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 14 |
12 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
10
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 17 |
12 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
12 2 3 5 6 7 8 15 18
|
dihsumssj |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ⊆ ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
| 20 |
11 19
|
eqssd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |