Metamath Proof Explorer


Theorem dihjatb

Description: Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014)

Ref Expression
Hypotheses dihjatb.l = ( le ‘ 𝐾 )
dihjatb.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjatb.j = ( join ‘ 𝐾 )
dihjatb.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjatb.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjatb.s = ( LSSum ‘ 𝑈 )
dihjatb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihjatb.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihjatb.p ( 𝜑 → ( 𝑃𝐴𝑃 𝑊 ) )
dihjatb.q ( 𝜑 → ( 𝑄𝐴𝑄 𝑊 ) )
Assertion dihjatb ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) = ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dihjatb.l = ( le ‘ 𝐾 )
2 dihjatb.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihjatb.j = ( join ‘ 𝐾 )
4 dihjatb.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dihjatb.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dihjatb.s = ( LSSum ‘ 𝑈 )
7 dihjatb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjatb.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dihjatb.p ( 𝜑 → ( 𝑃𝐴𝑃 𝑊 ) )
10 dihjatb.q ( 𝜑 → ( 𝑄𝐴𝑄 𝑊 ) )
11 1 3 4 2 5 6 7 8 9 10 dih2dimb ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )
12 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
13 9 simpld ( 𝜑𝑃𝐴 )
14 12 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
15 13 14 syl ( 𝜑𝑃 ∈ ( Base ‘ 𝐾 ) )
16 10 simpld ( 𝜑𝑄𝐴 )
17 12 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
18 16 17 syl ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
19 12 2 3 5 6 7 8 15 18 dihsumssj ( 𝜑 → ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ⊆ ( 𝐼 ‘ ( 𝑃 𝑄 ) ) )
20 11 19 eqssd ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) = ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )