Metamath Proof Explorer


Theorem dihjatb

Description: Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014)

Ref Expression
Hypotheses dihjatb.l ˙=K
dihjatb.h H=LHypK
dihjatb.j ˙=joinK
dihjatb.a A=AtomsK
dihjatb.u U=DVecHKW
dihjatb.s ˙=LSSumU
dihjatb.i I=DIsoHKW
dihjatb.k φKHLWH
dihjatb.p φPAP˙W
dihjatb.q φQAQ˙W
Assertion dihjatb φIP˙Q=IP˙IQ

Proof

Step Hyp Ref Expression
1 dihjatb.l ˙=K
2 dihjatb.h H=LHypK
3 dihjatb.j ˙=joinK
4 dihjatb.a A=AtomsK
5 dihjatb.u U=DVecHKW
6 dihjatb.s ˙=LSSumU
7 dihjatb.i I=DIsoHKW
8 dihjatb.k φKHLWH
9 dihjatb.p φPAP˙W
10 dihjatb.q φQAQ˙W
11 1 3 4 2 5 6 7 8 9 10 dih2dimb φIP˙QIP˙IQ
12 eqid BaseK=BaseK
13 9 simpld φPA
14 12 4 atbase PAPBaseK
15 13 14 syl φPBaseK
16 10 simpld φQA
17 12 4 atbase QAQBaseK
18 16 17 syl φQBaseK
19 12 2 3 5 6 7 8 15 18 dihsumssj φIP˙IQIP˙Q
20 11 19 eqssd φIP˙Q=IP˙IQ