Metamath Proof Explorer


Theorem dihjatc

Description: Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014)

Ref Expression
Hypotheses dihjatc.b B=BaseK
dihjatc.l ˙=K
dihjatc.h H=LHypK
dihjatc.j ˙=joinK
dihjatc.a A=AtomsK
dihjatc.u U=DVecHKW
dihjatc.s ˙=LSSumU
dihjatc.i I=DIsoHKW
dihjatc.k φKHLWH
dihjatc.x φXBX˙W
dihjatc.p φPA¬P˙W
Assertion dihjatc φIX˙P=IX˙IP

Proof

Step Hyp Ref Expression
1 dihjatc.b B=BaseK
2 dihjatc.l ˙=K
3 dihjatc.h H=LHypK
4 dihjatc.j ˙=joinK
5 dihjatc.a A=AtomsK
6 dihjatc.u U=DVecHKW
7 dihjatc.s ˙=LSSumU
8 dihjatc.i I=DIsoHKW
9 dihjatc.k φKHLWH
10 dihjatc.x φXBX˙W
11 dihjatc.p φPA¬P˙W
12 9 simpld φKHL
13 hlop KHLKOP
14 12 13 syl φKOP
15 eqid 1.K=1.K
16 1 15 op1cl KOP1.KB
17 14 16 syl φ1.KB
18 10 simpld φXB
19 11 simpld φPA
20 1 5 atbase PAPB
21 19 20 syl φPB
22 1 2 15 ople1 KOPPBP˙1.K
23 14 21 22 syl2anc φP˙1.K
24 hlol KHLKOL
25 12 24 syl φKOL
26 eqid meetK=meetK
27 1 26 15 olm12 KOLXB1.KmeetKX=X
28 25 18 27 syl2anc φ1.KmeetKX=X
29 10 simprd φX˙W
30 28 29 eqbrtrd φ1.KmeetKX˙W
31 1 2 3 4 26 5 6 7 8 dihjatc3 KHLWH1.KBXBPA¬P˙WP˙1.K1.KmeetKX˙WI1.KmeetKX˙P=I1.KmeetKX˙IP
32 9 17 18 11 23 30 31 syl312anc φI1.KmeetKX˙P=I1.KmeetKX˙IP
33 28 fvoveq1d φI1.KmeetKX˙P=IX˙P
34 28 fveq2d φI1.KmeetKX=IX
35 34 oveq1d φI1.KmeetKX˙IP=IX˙IP
36 32 33 35 3eqtr3d φIX˙P=IX˙IP