Description: Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihjatc.b | |
|
dihjatc.l | |
||
dihjatc.h | |
||
dihjatc.j | |
||
dihjatc.a | |
||
dihjatc.u | |
||
dihjatc.s | |
||
dihjatc.i | |
||
dihjatc.k | |
||
dihjatc.x | |
||
dihjatc.p | |
||
Assertion | dihjatc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatc.b | |
|
2 | dihjatc.l | |
|
3 | dihjatc.h | |
|
4 | dihjatc.j | |
|
5 | dihjatc.a | |
|
6 | dihjatc.u | |
|
7 | dihjatc.s | |
|
8 | dihjatc.i | |
|
9 | dihjatc.k | |
|
10 | dihjatc.x | |
|
11 | dihjatc.p | |
|
12 | 9 | simpld | |
13 | hlop | |
|
14 | 12 13 | syl | |
15 | eqid | |
|
16 | 1 15 | op1cl | |
17 | 14 16 | syl | |
18 | 10 | simpld | |
19 | 11 | simpld | |
20 | 1 5 | atbase | |
21 | 19 20 | syl | |
22 | 1 2 15 | ople1 | |
23 | 14 21 22 | syl2anc | |
24 | hlol | |
|
25 | 12 24 | syl | |
26 | eqid | |
|
27 | 1 26 15 | olm12 | |
28 | 25 18 27 | syl2anc | |
29 | 10 | simprd | |
30 | 28 29 | eqbrtrd | |
31 | 1 2 3 4 26 5 6 7 8 | dihjatc3 | |
32 | 9 17 18 11 23 30 31 | syl312anc | |
33 | 28 | fvoveq1d | |
34 | 28 | fveq2d | |
35 | 34 | oveq1d | |
36 | 32 33 35 | 3eqtr3d | |