Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcclem.b |
|
2 |
|
dihjatcclem.l |
|
3 |
|
dihjatcclem.h |
|
4 |
|
dihjatcclem.j |
|
5 |
|
dihjatcclem.m |
|
6 |
|
dihjatcclem.a |
|
7 |
|
dihjatcclem.u |
|
8 |
|
dihjatcclem.s |
|
9 |
|
dihjatcclem.i |
|
10 |
|
dihjatcclem.v |
|
11 |
|
dihjatcclem.k |
|
12 |
|
dihjatcclem.p |
|
13 |
|
dihjatcclem.q |
|
14 |
3 7 11
|
dvhlmod |
|
15 |
|
lmodabl |
|
16 |
14 15
|
syl |
|
17 |
|
eqid |
|
18 |
17
|
lsssssubg |
|
19 |
14 18
|
syl |
|
20 |
12
|
simpld |
|
21 |
1 6
|
atbase |
|
22 |
20 21
|
syl |
|
23 |
1 3 9 7 17
|
dihlss |
|
24 |
11 22 23
|
syl2anc |
|
25 |
19 24
|
sseldd |
|
26 |
11
|
simpld |
|
27 |
26
|
hllatd |
|
28 |
13
|
simpld |
|
29 |
1 4 6
|
hlatjcl |
|
30 |
26 20 28 29
|
syl3anc |
|
31 |
11
|
simprd |
|
32 |
1 3
|
lhpbase |
|
33 |
31 32
|
syl |
|
34 |
1 5
|
latmcl |
|
35 |
27 30 33 34
|
syl3anc |
|
36 |
10 35
|
eqeltrid |
|
37 |
1 3 9 7 17
|
dihlss |
|
38 |
11 36 37
|
syl2anc |
|
39 |
19 38
|
sseldd |
|
40 |
1 6
|
atbase |
|
41 |
28 40
|
syl |
|
42 |
1 3 9 7 17
|
dihlss |
|
43 |
11 41 42
|
syl2anc |
|
44 |
19 43
|
sseldd |
|
45 |
8
|
lsm4 |
|
46 |
16 25 39 44 39 45
|
syl122anc |
|
47 |
13
|
simprd |
|
48 |
47
|
intnand |
|
49 |
1 2 4
|
latjle12 |
|
50 |
27 22 41 33 49
|
syl13anc |
|
51 |
48 50
|
mtbid |
|
52 |
2 4 6
|
hlatlej1 |
|
53 |
26 20 28 52
|
syl3anc |
|
54 |
1 2 4 5 6 3 9 7 8
|
dihvalcq2 |
|
55 |
11 30 51 12 53 54
|
syl122anc |
|
56 |
10
|
fveq2i |
|
57 |
56
|
oveq2i |
|
58 |
55 57
|
eqtr4di |
|
59 |
2 4 6
|
hlatlej2 |
|
60 |
26 20 28 59
|
syl3anc |
|
61 |
1 2 4 5 6 3 9 7 8
|
dihvalcq2 |
|
62 |
11 30 51 13 60 61
|
syl122anc |
|
63 |
56
|
oveq2i |
|
64 |
62 63
|
eqtr4di |
|
65 |
58 64
|
oveq12d |
|
66 |
1 3 9 7 17
|
dihlss |
|
67 |
11 30 66
|
syl2anc |
|
68 |
19 67
|
sseldd |
|
69 |
8
|
lsmidm |
|
70 |
68 69
|
syl |
|
71 |
65 70
|
eqtr3d |
|
72 |
8
|
lsmidm |
|
73 |
39 72
|
syl |
|
74 |
73
|
oveq2d |
|
75 |
46 71 74
|
3eqtr3d |
|