Metamath Proof Explorer


Theorem dihjatcclem1

Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b B = Base K
dihjatcclem.l ˙ = K
dihjatcclem.h H = LHyp K
dihjatcclem.j ˙ = join K
dihjatcclem.m ˙ = meet K
dihjatcclem.a A = Atoms K
dihjatcclem.u U = DVecH K W
dihjatcclem.s ˙ = LSSum U
dihjatcclem.i I = DIsoH K W
dihjatcclem.v V = P ˙ Q ˙ W
dihjatcclem.k φ K HL W H
dihjatcclem.p φ P A ¬ P ˙ W
dihjatcclem.q φ Q A ¬ Q ˙ W
Assertion dihjatcclem1 φ I P ˙ Q = I P ˙ I Q ˙ I V

Proof

Step Hyp Ref Expression
1 dihjatcclem.b B = Base K
2 dihjatcclem.l ˙ = K
3 dihjatcclem.h H = LHyp K
4 dihjatcclem.j ˙ = join K
5 dihjatcclem.m ˙ = meet K
6 dihjatcclem.a A = Atoms K
7 dihjatcclem.u U = DVecH K W
8 dihjatcclem.s ˙ = LSSum U
9 dihjatcclem.i I = DIsoH K W
10 dihjatcclem.v V = P ˙ Q ˙ W
11 dihjatcclem.k φ K HL W H
12 dihjatcclem.p φ P A ¬ P ˙ W
13 dihjatcclem.q φ Q A ¬ Q ˙ W
14 3 7 11 dvhlmod φ U LMod
15 lmodabl U LMod U Abel
16 14 15 syl φ U Abel
17 eqid LSubSp U = LSubSp U
18 17 lsssssubg U LMod LSubSp U SubGrp U
19 14 18 syl φ LSubSp U SubGrp U
20 12 simpld φ P A
21 1 6 atbase P A P B
22 20 21 syl φ P B
23 1 3 9 7 17 dihlss K HL W H P B I P LSubSp U
24 11 22 23 syl2anc φ I P LSubSp U
25 19 24 sseldd φ I P SubGrp U
26 11 simpld φ K HL
27 26 hllatd φ K Lat
28 13 simpld φ Q A
29 1 4 6 hlatjcl K HL P A Q A P ˙ Q B
30 26 20 28 29 syl3anc φ P ˙ Q B
31 11 simprd φ W H
32 1 3 lhpbase W H W B
33 31 32 syl φ W B
34 1 5 latmcl K Lat P ˙ Q B W B P ˙ Q ˙ W B
35 27 30 33 34 syl3anc φ P ˙ Q ˙ W B
36 10 35 eqeltrid φ V B
37 1 3 9 7 17 dihlss K HL W H V B I V LSubSp U
38 11 36 37 syl2anc φ I V LSubSp U
39 19 38 sseldd φ I V SubGrp U
40 1 6 atbase Q A Q B
41 28 40 syl φ Q B
42 1 3 9 7 17 dihlss K HL W H Q B I Q LSubSp U
43 11 41 42 syl2anc φ I Q LSubSp U
44 19 43 sseldd φ I Q SubGrp U
45 8 lsm4 U Abel I P SubGrp U I V SubGrp U I Q SubGrp U I V SubGrp U I P ˙ I V ˙ I Q ˙ I V = I P ˙ I Q ˙ I V ˙ I V
46 16 25 39 44 39 45 syl122anc φ I P ˙ I V ˙ I Q ˙ I V = I P ˙ I Q ˙ I V ˙ I V
47 13 simprd φ ¬ Q ˙ W
48 47 intnand φ ¬ P ˙ W Q ˙ W
49 1 2 4 latjle12 K Lat P B Q B W B P ˙ W Q ˙ W P ˙ Q ˙ W
50 27 22 41 33 49 syl13anc φ P ˙ W Q ˙ W P ˙ Q ˙ W
51 48 50 mtbid φ ¬ P ˙ Q ˙ W
52 2 4 6 hlatlej1 K HL P A Q A P ˙ P ˙ Q
53 26 20 28 52 syl3anc φ P ˙ P ˙ Q
54 1 2 4 5 6 3 9 7 8 dihvalcq2 K HL W H P ˙ Q B ¬ P ˙ Q ˙ W P A ¬ P ˙ W P ˙ P ˙ Q I P ˙ Q = I P ˙ I P ˙ Q ˙ W
55 11 30 51 12 53 54 syl122anc φ I P ˙ Q = I P ˙ I P ˙ Q ˙ W
56 10 fveq2i I V = I P ˙ Q ˙ W
57 56 oveq2i I P ˙ I V = I P ˙ I P ˙ Q ˙ W
58 55 57 eqtr4di φ I P ˙ Q = I P ˙ I V
59 2 4 6 hlatlej2 K HL P A Q A Q ˙ P ˙ Q
60 26 20 28 59 syl3anc φ Q ˙ P ˙ Q
61 1 2 4 5 6 3 9 7 8 dihvalcq2 K HL W H P ˙ Q B ¬ P ˙ Q ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ Q I P ˙ Q = I Q ˙ I P ˙ Q ˙ W
62 11 30 51 13 60 61 syl122anc φ I P ˙ Q = I Q ˙ I P ˙ Q ˙ W
63 56 oveq2i I Q ˙ I V = I Q ˙ I P ˙ Q ˙ W
64 62 63 eqtr4di φ I P ˙ Q = I Q ˙ I V
65 58 64 oveq12d φ I P ˙ Q ˙ I P ˙ Q = I P ˙ I V ˙ I Q ˙ I V
66 1 3 9 7 17 dihlss K HL W H P ˙ Q B I P ˙ Q LSubSp U
67 11 30 66 syl2anc φ I P ˙ Q LSubSp U
68 19 67 sseldd φ I P ˙ Q SubGrp U
69 8 lsmidm I P ˙ Q SubGrp U I P ˙ Q ˙ I P ˙ Q = I P ˙ Q
70 68 69 syl φ I P ˙ Q ˙ I P ˙ Q = I P ˙ Q
71 65 70 eqtr3d φ I P ˙ I V ˙ I Q ˙ I V = I P ˙ Q
72 8 lsmidm I V SubGrp U I V ˙ I V = I V
73 39 72 syl φ I V ˙ I V = I V
74 73 oveq2d φ I P ˙ I Q ˙ I V ˙ I V = I P ˙ I Q ˙ I V
75 46 71 74 3eqtr3d φ I P ˙ Q = I P ˙ I Q ˙ I V