Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcclem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjatcclem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjatcclem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihjatcclem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihjatcclem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihjatcclem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihjatcclem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjatcclem.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihjatcclem.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihjatcclem.v |
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
11 |
|
dihjatcclem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
dihjatcclem.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
|
dihjatcclem.q |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
14 |
3 7 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
|
lmodabl |
⊢ ( 𝑈 ∈ LMod → 𝑈 ∈ Abel ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Abel ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
18 |
17
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
19 |
14 18
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
20 |
12
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
21 |
1 6
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
23 |
1 3 9 7 17
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
24 |
11 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
19 24
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
26 |
11
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
27 |
26
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
28 |
13
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
29 |
1 4 6
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
30 |
26 20 28 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
31 |
11
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
32 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
34 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐵 ) |
35 |
27 30 33 34
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐵 ) |
36 |
10 35
|
eqeltrid |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
37 |
1 3 9 7 17
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑉 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑉 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
38 |
11 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑉 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
39 |
19 38
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
40 |
1 6
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
41 |
28 40
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
42 |
1 3 9 7 17
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
43 |
11 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
44 |
19 43
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
45 |
8
|
lsm4 |
⊢ ( ( 𝑈 ∈ Abel ∧ ( ( 𝐼 ‘ 𝑃 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑈 ) ) ∧ ( ( 𝐼 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑈 ) ) ) → ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ⊕ ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) = ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ⊕ ( ( 𝐼 ‘ 𝑉 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) ) |
46 |
16 25 39 44 39 45
|
syl122anc |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ⊕ ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) = ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ⊕ ( ( 𝐼 ‘ 𝑉 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) ) |
47 |
13
|
simprd |
⊢ ( 𝜑 → ¬ 𝑄 ≤ 𝑊 ) |
48 |
47
|
intnand |
⊢ ( 𝜑 → ¬ ( 𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊 ) ) |
49 |
1 2 4
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊 ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) |
50 |
27 22 41 33 49
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊 ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) |
51 |
48 50
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) |
52 |
2 4 6
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
53 |
26 20 28 52
|
syl3anc |
⊢ ( 𝜑 → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
54 |
1 2 4 5 6 3 9 7 8
|
dihvalcq2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ ¬ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
55 |
11 30 51 12 53 54
|
syl122anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
56 |
10
|
fveq2i |
⊢ ( 𝐼 ‘ 𝑉 ) = ( 𝐼 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
57 |
56
|
oveq2i |
⊢ ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
58 |
55 57
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |
59 |
2 4 6
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
60 |
26 20 28 59
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
61 |
1 2 4 5 6 3 9 7 8
|
dihvalcq2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ ¬ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
62 |
11 30 51 13 60 61
|
syl122anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
63 |
56
|
oveq2i |
⊢ ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
64 |
62 63
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |
65 |
58 64
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ⊕ ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ⊕ ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) ) |
66 |
1 3 9 7 17
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
67 |
11 30 66
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
68 |
19 67
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
69 |
8
|
lsmidm |
⊢ ( ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) → ( ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ⊕ ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ) = ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
70 |
68 69
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ⊕ ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ) = ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
71 |
65 70
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ⊕ ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) = ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
72 |
8
|
lsmidm |
⊢ ( ( 𝐼 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑈 ) → ( ( 𝐼 ‘ 𝑉 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) = ( 𝐼 ‘ 𝑉 ) ) |
73 |
39 72
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑉 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) = ( 𝐼 ‘ 𝑉 ) ) |
74 |
73
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ⊕ ( ( 𝐼 ‘ 𝑉 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) = ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |
75 |
46 71 74
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |