| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcom.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝐺 ∈ Abel ) |
| 3 |
|
simp2r |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
simp3l |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
1
|
lsmcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑅 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑅 ) ) |
| 6 |
2 3 4 5
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑅 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑅 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
| 8 |
|
simp2l |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 |
1
|
lsmass |
⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) ) |
| 10 |
8 3 4 9
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) ) |
| 11 |
1
|
lsmass |
⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
| 12 |
8 4 3 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
| 13 |
7 10 12
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) ) |
| 15 |
1
|
lsmsubg2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
2 8 3 15
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 |
|
simp3r |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 18 |
1
|
lsmass |
⊢ ( ( ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 19 |
16 4 17 18
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 20 |
1
|
lsmsubg2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 |
2 8 4 20
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 22 |
1
|
lsmass |
⊢ ( ( ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |
| 23 |
21 3 17 22
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |
| 24 |
14 19 23
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |