Metamath Proof Explorer


Theorem lsm4

Description: Commutative/associative law for subgroup sum. (Contributed by NM, 26-Sep-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmcom.s = ( LSSum ‘ 𝐺 )
Assertion lsm4 ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) = ( ( 𝑄 𝑇 ) ( 𝑅 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 lsmcom.s = ( LSSum ‘ 𝐺 )
2 simp1 ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝐺 ∈ Abel )
3 simp2r ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑅 ∈ ( SubGrp ‘ 𝐺 ) )
4 simp3l ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
5 1 lsmcom ( ( 𝐺 ∈ Abel ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑅 𝑇 ) = ( 𝑇 𝑅 ) )
6 2 3 4 5 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑅 𝑇 ) = ( 𝑇 𝑅 ) )
7 6 oveq2d ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ( 𝑅 𝑇 ) ) = ( 𝑄 ( 𝑇 𝑅 ) ) )
8 simp2l ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑄 ∈ ( SubGrp ‘ 𝐺 ) )
9 1 lsmass ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 𝑅 ) 𝑇 ) = ( 𝑄 ( 𝑅 𝑇 ) ) )
10 8 3 4 9 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 𝑅 ) 𝑇 ) = ( 𝑄 ( 𝑅 𝑇 ) ) )
11 1 lsmass ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 𝑇 ) 𝑅 ) = ( 𝑄 ( 𝑇 𝑅 ) ) )
12 8 4 3 11 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 𝑇 ) 𝑅 ) = ( 𝑄 ( 𝑇 𝑅 ) ) )
13 7 10 12 3eqtr4d ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 𝑅 ) 𝑇 ) = ( ( 𝑄 𝑇 ) 𝑅 ) )
14 13 oveq1d ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 𝑅 ) 𝑇 ) 𝑈 ) = ( ( ( 𝑄 𝑇 ) 𝑅 ) 𝑈 ) )
15 1 lsmsubg2 ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) )
16 2 8 3 15 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) )
17 simp3r ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
18 1 lsmass ( ( ( 𝑄 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 𝑅 ) 𝑇 ) 𝑈 ) = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) )
19 16 4 17 18 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 𝑅 ) 𝑇 ) 𝑈 ) = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) )
20 1 lsmsubg2 ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) )
21 2 8 4 20 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) )
22 1 lsmass ( ( ( 𝑄 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 𝑇 ) 𝑅 ) 𝑈 ) = ( ( 𝑄 𝑇 ) ( 𝑅 𝑈 ) ) )
23 21 3 17 22 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 𝑇 ) 𝑅 ) 𝑈 ) = ( ( 𝑄 𝑇 ) ( 𝑅 𝑈 ) ) )
24 14 19 23 3eqtr3d ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) = ( ( 𝑄 𝑇 ) ( 𝑅 𝑈 ) ) )