| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdscmnd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdscmnd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 3 |
|
prdscmnd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
prdscmnd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ CMnd ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
| 7 |
|
cmnmnd |
⊢ ( 𝑎 ∈ CMnd → 𝑎 ∈ Mnd ) |
| 8 |
7
|
ssriv |
⊢ CMnd ⊆ Mnd |
| 9 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ CMnd ∧ CMnd ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 10 |
4 8 9
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 11 |
1 2 3 10
|
prdsmndd |
⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 12 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ CMnd ) |
| 13 |
12
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑐 ) ∈ CMnd ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 15 |
3
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ V ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑆 ∈ V ) |
| 18 |
2
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 21 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 Fn 𝐼 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 24 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑐 ∈ 𝐼 ) |
| 26 |
1 14 17 20 23 24 25
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) |
| 27 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 28 |
1 14 17 20 23 27 25
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) |
| 30 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) |
| 31 |
29 30
|
cmncom |
⊢ ( ( ( 𝑅 ‘ 𝑐 ) ∈ CMnd ∧ ( 𝑎 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ∧ ( 𝑏 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) → ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) = ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) |
| 32 |
13 26 28 31
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) = ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) |
| 33 |
32
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) |
| 34 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 35 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 36 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 37 |
1 14 16 19 22 34 35 36
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) ) ) |
| 38 |
1 14 16 19 22 35 34 36
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) |
| 39 |
33 37 38
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) ) |
| 40 |
5 6 11 39
|
iscmnd |
⊢ ( 𝜑 → 𝑌 ∈ CMnd ) |