| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdscmnd.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
prdscmnd.i |
|- ( ph -> I e. W ) |
| 3 |
|
prdscmnd.s |
|- ( ph -> S e. V ) |
| 4 |
|
prdscmnd.r |
|- ( ph -> R : I --> CMnd ) |
| 5 |
|
eqidd |
|- ( ph -> ( Base ` Y ) = ( Base ` Y ) ) |
| 6 |
|
eqidd |
|- ( ph -> ( +g ` Y ) = ( +g ` Y ) ) |
| 7 |
|
cmnmnd |
|- ( a e. CMnd -> a e. Mnd ) |
| 8 |
7
|
ssriv |
|- CMnd C_ Mnd |
| 9 |
|
fss |
|- ( ( R : I --> CMnd /\ CMnd C_ Mnd ) -> R : I --> Mnd ) |
| 10 |
4 8 9
|
sylancl |
|- ( ph -> R : I --> Mnd ) |
| 11 |
1 2 3 10
|
prdsmndd |
|- ( ph -> Y e. Mnd ) |
| 12 |
4
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> R : I --> CMnd ) |
| 13 |
12
|
ffvelcdmda |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( R ` c ) e. CMnd ) |
| 14 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 15 |
3
|
elexd |
|- ( ph -> S e. _V ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> S e. _V ) |
| 17 |
16
|
adantr |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> S e. _V ) |
| 18 |
2
|
elexd |
|- ( ph -> I e. _V ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> I e. _V ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> I e. _V ) |
| 21 |
4
|
ffnd |
|- ( ph -> R Fn I ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> R Fn I ) |
| 23 |
22
|
adantr |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> R Fn I ) |
| 24 |
|
simpl2 |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> a e. ( Base ` Y ) ) |
| 25 |
|
simpr |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> c e. I ) |
| 26 |
1 14 17 20 23 24 25
|
prdsbasprj |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( a ` c ) e. ( Base ` ( R ` c ) ) ) |
| 27 |
|
simpl3 |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> b e. ( Base ` Y ) ) |
| 28 |
1 14 17 20 23 27 25
|
prdsbasprj |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( b ` c ) e. ( Base ` ( R ` c ) ) ) |
| 29 |
|
eqid |
|- ( Base ` ( R ` c ) ) = ( Base ` ( R ` c ) ) |
| 30 |
|
eqid |
|- ( +g ` ( R ` c ) ) = ( +g ` ( R ` c ) ) |
| 31 |
29 30
|
cmncom |
|- ( ( ( R ` c ) e. CMnd /\ ( a ` c ) e. ( Base ` ( R ` c ) ) /\ ( b ` c ) e. ( Base ` ( R ` c ) ) ) -> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) = ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) |
| 32 |
13 26 28 31
|
syl3anc |
|- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) = ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) |
| 33 |
32
|
mpteq2dva |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( c e. I |-> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) ) = ( c e. I |-> ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) ) |
| 34 |
|
simp2 |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> a e. ( Base ` Y ) ) |
| 35 |
|
simp3 |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> b e. ( Base ` Y ) ) |
| 36 |
|
eqid |
|- ( +g ` Y ) = ( +g ` Y ) |
| 37 |
1 14 16 19 22 34 35 36
|
prdsplusgval |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( a ( +g ` Y ) b ) = ( c e. I |-> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) ) ) |
| 38 |
1 14 16 19 22 35 34 36
|
prdsplusgval |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( b ( +g ` Y ) a ) = ( c e. I |-> ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) ) |
| 39 |
33 37 38
|
3eqtr4d |
|- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( a ( +g ` Y ) b ) = ( b ( +g ` Y ) a ) ) |
| 40 |
5 6 11 39
|
iscmnd |
|- ( ph -> Y e. CMnd ) |