| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbasmpt.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
prdsbasmpt.b |
|- B = ( Base ` Y ) |
| 3 |
|
prdsbasmpt.s |
|- ( ph -> S e. V ) |
| 4 |
|
prdsbasmpt.i |
|- ( ph -> I e. W ) |
| 5 |
|
prdsbasmpt.r |
|- ( ph -> R Fn I ) |
| 6 |
|
prdsbasmpt.t |
|- ( ph -> T e. B ) |
| 7 |
|
prdsbasprj.j |
|- ( ph -> J e. I ) |
| 8 |
|
fveq2 |
|- ( x = J -> ( T ` x ) = ( T ` J ) ) |
| 9 |
|
2fveq3 |
|- ( x = J -> ( Base ` ( R ` x ) ) = ( Base ` ( R ` J ) ) ) |
| 10 |
8 9
|
eleq12d |
|- ( x = J -> ( ( T ` x ) e. ( Base ` ( R ` x ) ) <-> ( T ` J ) e. ( Base ` ( R ` J ) ) ) ) |
| 11 |
1 2 3 4 5
|
prdsbas2 |
|- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 12 |
6 11
|
eleqtrd |
|- ( ph -> T e. X_ x e. I ( Base ` ( R ` x ) ) ) |
| 13 |
|
elixp2 |
|- ( T e. X_ x e. I ( Base ` ( R ` x ) ) <-> ( T e. _V /\ T Fn I /\ A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) ) |
| 14 |
13
|
simp3bi |
|- ( T e. X_ x e. I ( Base ` ( R ` x ) ) -> A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) |
| 15 |
12 14
|
syl |
|- ( ph -> A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) |
| 16 |
10 15 7
|
rspcdva |
|- ( ph -> ( T ` J ) e. ( Base ` ( R ` J ) ) ) |