Description: The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
prdsbasmpt.b | |- B = ( Base ` Y ) |
||
prdsbasmpt.s | |- ( ph -> S e. V ) |
||
prdsbasmpt.i | |- ( ph -> I e. W ) |
||
prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
Assertion | prdsbas2 | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
6 | fnex | |- ( ( R Fn I /\ I e. W ) -> R e. _V ) |
|
7 | 5 4 6 | syl2anc | |- ( ph -> R e. _V ) |
8 | 5 | fndmd | |- ( ph -> dom R = I ) |
9 | 1 3 7 2 8 | prdsbas | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |