Metamath Proof Explorer


Theorem prdsbas2

Description: The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y
|- Y = ( S Xs_ R )
prdsbasmpt.b
|- B = ( Base ` Y )
prdsbasmpt.s
|- ( ph -> S e. V )
prdsbasmpt.i
|- ( ph -> I e. W )
prdsbasmpt.r
|- ( ph -> R Fn I )
Assertion prdsbas2
|- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) )

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y
 |-  Y = ( S Xs_ R )
2 prdsbasmpt.b
 |-  B = ( Base ` Y )
3 prdsbasmpt.s
 |-  ( ph -> S e. V )
4 prdsbasmpt.i
 |-  ( ph -> I e. W )
5 prdsbasmpt.r
 |-  ( ph -> R Fn I )
6 fnex
 |-  ( ( R Fn I /\ I e. W ) -> R e. _V )
7 5 4 6 syl2anc
 |-  ( ph -> R e. _V )
8 5 fndmd
 |-  ( ph -> dom R = I )
9 1 3 7 2 8 prdsbas
 |-  ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) )