Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
prdsbas2
Metamath Proof Explorer
Description: The base set of a structure product is an indexed set product.
(Contributed by Stefan O'Rear , 10-Jan-2015) (Revised by Mario
Carneiro , 15-Aug-2015)
Ref
Expression
Hypotheses
prdsbasmpt.y
⊢ 𝑌 = ( 𝑆 X s 𝑅 )
prdsbasmpt.b
⊢ 𝐵 = ( Base ‘ 𝑌 )
prdsbasmpt.s
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 )
prdsbasmpt.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 )
prdsbasmpt.r
⊢ ( 𝜑 → 𝑅 Fn 𝐼 )
Assertion
prdsbas2
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) )
Proof
Step
Hyp
Ref
Expression
1
prdsbasmpt.y
⊢ 𝑌 = ( 𝑆 X s 𝑅 )
2
prdsbasmpt.b
⊢ 𝐵 = ( Base ‘ 𝑌 )
3
prdsbasmpt.s
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 )
4
prdsbasmpt.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 )
5
prdsbasmpt.r
⊢ ( 𝜑 → 𝑅 Fn 𝐼 )
6
fnex
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ V )
7
5 4 6
syl2anc
⊢ ( 𝜑 → 𝑅 ∈ V )
8
5
fndmd
⊢ ( 𝜑 → dom 𝑅 = 𝐼 )
9
1 3 7 2 8
prdsbas
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) )