Metamath Proof Explorer


Theorem prdsbas2

Description: The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdsbasmpt.b 𝐵 = ( Base ‘ 𝑌 )
prdsbasmpt.s ( 𝜑𝑆𝑉 )
prdsbasmpt.i ( 𝜑𝐼𝑊 )
prdsbasmpt.r ( 𝜑𝑅 Fn 𝐼 )
Assertion prdsbas2 ( 𝜑𝐵 = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdsbasmpt.b 𝐵 = ( Base ‘ 𝑌 )
3 prdsbasmpt.s ( 𝜑𝑆𝑉 )
4 prdsbasmpt.i ( 𝜑𝐼𝑊 )
5 prdsbasmpt.r ( 𝜑𝑅 Fn 𝐼 )
6 fnex ( ( 𝑅 Fn 𝐼𝐼𝑊 ) → 𝑅 ∈ V )
7 5 4 6 syl2anc ( 𝜑𝑅 ∈ V )
8 5 fndmd ( 𝜑 → dom 𝑅 = 𝐼 )
9 1 3 7 2 8 prdsbas ( 𝜑𝐵 = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )