Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcclem.b |
|- B = ( Base ` K ) |
2 |
|
dihjatcclem.l |
|- .<_ = ( le ` K ) |
3 |
|
dihjatcclem.h |
|- H = ( LHyp ` K ) |
4 |
|
dihjatcclem.j |
|- .\/ = ( join ` K ) |
5 |
|
dihjatcclem.m |
|- ./\ = ( meet ` K ) |
6 |
|
dihjatcclem.a |
|- A = ( Atoms ` K ) |
7 |
|
dihjatcclem.u |
|- U = ( ( DVecH ` K ) ` W ) |
8 |
|
dihjatcclem.s |
|- .(+) = ( LSSum ` U ) |
9 |
|
dihjatcclem.i |
|- I = ( ( DIsoH ` K ) ` W ) |
10 |
|
dihjatcclem.v |
|- V = ( ( P .\/ Q ) ./\ W ) |
11 |
|
dihjatcclem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
dihjatcclem.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
13 |
|
dihjatcclem.q |
|- ( ph -> ( Q e. A /\ -. Q .<_ W ) ) |
14 |
3 7 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
|
lmodabl |
|- ( U e. LMod -> U e. Abel ) |
16 |
14 15
|
syl |
|- ( ph -> U e. Abel ) |
17 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
18 |
17
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
19 |
14 18
|
syl |
|- ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
20 |
12
|
simpld |
|- ( ph -> P e. A ) |
21 |
1 6
|
atbase |
|- ( P e. A -> P e. B ) |
22 |
20 21
|
syl |
|- ( ph -> P e. B ) |
23 |
1 3 9 7 17
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. B ) -> ( I ` P ) e. ( LSubSp ` U ) ) |
24 |
11 22 23
|
syl2anc |
|- ( ph -> ( I ` P ) e. ( LSubSp ` U ) ) |
25 |
19 24
|
sseldd |
|- ( ph -> ( I ` P ) e. ( SubGrp ` U ) ) |
26 |
11
|
simpld |
|- ( ph -> K e. HL ) |
27 |
26
|
hllatd |
|- ( ph -> K e. Lat ) |
28 |
13
|
simpld |
|- ( ph -> Q e. A ) |
29 |
1 4 6
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B ) |
30 |
26 20 28 29
|
syl3anc |
|- ( ph -> ( P .\/ Q ) e. B ) |
31 |
11
|
simprd |
|- ( ph -> W e. H ) |
32 |
1 3
|
lhpbase |
|- ( W e. H -> W e. B ) |
33 |
31 32
|
syl |
|- ( ph -> W e. B ) |
34 |
1 5
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. B /\ W e. B ) -> ( ( P .\/ Q ) ./\ W ) e. B ) |
35 |
27 30 33 34
|
syl3anc |
|- ( ph -> ( ( P .\/ Q ) ./\ W ) e. B ) |
36 |
10 35
|
eqeltrid |
|- ( ph -> V e. B ) |
37 |
1 3 9 7 17
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ V e. B ) -> ( I ` V ) e. ( LSubSp ` U ) ) |
38 |
11 36 37
|
syl2anc |
|- ( ph -> ( I ` V ) e. ( LSubSp ` U ) ) |
39 |
19 38
|
sseldd |
|- ( ph -> ( I ` V ) e. ( SubGrp ` U ) ) |
40 |
1 6
|
atbase |
|- ( Q e. A -> Q e. B ) |
41 |
28 40
|
syl |
|- ( ph -> Q e. B ) |
42 |
1 3 9 7 17
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. B ) -> ( I ` Q ) e. ( LSubSp ` U ) ) |
43 |
11 41 42
|
syl2anc |
|- ( ph -> ( I ` Q ) e. ( LSubSp ` U ) ) |
44 |
19 43
|
sseldd |
|- ( ph -> ( I ` Q ) e. ( SubGrp ` U ) ) |
45 |
8
|
lsm4 |
|- ( ( U e. Abel /\ ( ( I ` P ) e. ( SubGrp ` U ) /\ ( I ` V ) e. ( SubGrp ` U ) ) /\ ( ( I ` Q ) e. ( SubGrp ` U ) /\ ( I ` V ) e. ( SubGrp ` U ) ) ) -> ( ( ( I ` P ) .(+) ( I ` V ) ) .(+) ( ( I ` Q ) .(+) ( I ` V ) ) ) = ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( ( I ` V ) .(+) ( I ` V ) ) ) ) |
46 |
16 25 39 44 39 45
|
syl122anc |
|- ( ph -> ( ( ( I ` P ) .(+) ( I ` V ) ) .(+) ( ( I ` Q ) .(+) ( I ` V ) ) ) = ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( ( I ` V ) .(+) ( I ` V ) ) ) ) |
47 |
13
|
simprd |
|- ( ph -> -. Q .<_ W ) |
48 |
47
|
intnand |
|- ( ph -> -. ( P .<_ W /\ Q .<_ W ) ) |
49 |
1 2 4
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. B /\ Q e. B /\ W e. B ) ) -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
50 |
27 22 41 33 49
|
syl13anc |
|- ( ph -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
51 |
48 50
|
mtbid |
|- ( ph -> -. ( P .\/ Q ) .<_ W ) |
52 |
2 4 6
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) ) |
53 |
26 20 28 52
|
syl3anc |
|- ( ph -> P .<_ ( P .\/ Q ) ) |
54 |
1 2 4 5 6 3 9 7 8
|
dihvalcq2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P .\/ Q ) e. B /\ -. ( P .\/ Q ) .<_ W ) /\ ( ( P e. A /\ -. P .<_ W ) /\ P .<_ ( P .\/ Q ) ) ) -> ( I ` ( P .\/ Q ) ) = ( ( I ` P ) .(+) ( I ` ( ( P .\/ Q ) ./\ W ) ) ) ) |
55 |
11 30 51 12 53 54
|
syl122anc |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( I ` P ) .(+) ( I ` ( ( P .\/ Q ) ./\ W ) ) ) ) |
56 |
10
|
fveq2i |
|- ( I ` V ) = ( I ` ( ( P .\/ Q ) ./\ W ) ) |
57 |
56
|
oveq2i |
|- ( ( I ` P ) .(+) ( I ` V ) ) = ( ( I ` P ) .(+) ( I ` ( ( P .\/ Q ) ./\ W ) ) ) |
58 |
55 57
|
eqtr4di |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( I ` P ) .(+) ( I ` V ) ) ) |
59 |
2 4 6
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
60 |
26 20 28 59
|
syl3anc |
|- ( ph -> Q .<_ ( P .\/ Q ) ) |
61 |
1 2 4 5 6 3 9 7 8
|
dihvalcq2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P .\/ Q ) e. B /\ -. ( P .\/ Q ) .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ Q ) ) ) -> ( I ` ( P .\/ Q ) ) = ( ( I ` Q ) .(+) ( I ` ( ( P .\/ Q ) ./\ W ) ) ) ) |
62 |
11 30 51 13 60 61
|
syl122anc |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( I ` Q ) .(+) ( I ` ( ( P .\/ Q ) ./\ W ) ) ) ) |
63 |
56
|
oveq2i |
|- ( ( I ` Q ) .(+) ( I ` V ) ) = ( ( I ` Q ) .(+) ( I ` ( ( P .\/ Q ) ./\ W ) ) ) |
64 |
62 63
|
eqtr4di |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( I ` Q ) .(+) ( I ` V ) ) ) |
65 |
58 64
|
oveq12d |
|- ( ph -> ( ( I ` ( P .\/ Q ) ) .(+) ( I ` ( P .\/ Q ) ) ) = ( ( ( I ` P ) .(+) ( I ` V ) ) .(+) ( ( I ` Q ) .(+) ( I ` V ) ) ) ) |
66 |
1 3 9 7 17
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P .\/ Q ) e. B ) -> ( I ` ( P .\/ Q ) ) e. ( LSubSp ` U ) ) |
67 |
11 30 66
|
syl2anc |
|- ( ph -> ( I ` ( P .\/ Q ) ) e. ( LSubSp ` U ) ) |
68 |
19 67
|
sseldd |
|- ( ph -> ( I ` ( P .\/ Q ) ) e. ( SubGrp ` U ) ) |
69 |
8
|
lsmidm |
|- ( ( I ` ( P .\/ Q ) ) e. ( SubGrp ` U ) -> ( ( I ` ( P .\/ Q ) ) .(+) ( I ` ( P .\/ Q ) ) ) = ( I ` ( P .\/ Q ) ) ) |
70 |
68 69
|
syl |
|- ( ph -> ( ( I ` ( P .\/ Q ) ) .(+) ( I ` ( P .\/ Q ) ) ) = ( I ` ( P .\/ Q ) ) ) |
71 |
65 70
|
eqtr3d |
|- ( ph -> ( ( ( I ` P ) .(+) ( I ` V ) ) .(+) ( ( I ` Q ) .(+) ( I ` V ) ) ) = ( I ` ( P .\/ Q ) ) ) |
72 |
8
|
lsmidm |
|- ( ( I ` V ) e. ( SubGrp ` U ) -> ( ( I ` V ) .(+) ( I ` V ) ) = ( I ` V ) ) |
73 |
39 72
|
syl |
|- ( ph -> ( ( I ` V ) .(+) ( I ` V ) ) = ( I ` V ) ) |
74 |
73
|
oveq2d |
|- ( ph -> ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( ( I ` V ) .(+) ( I ` V ) ) ) = ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( I ` V ) ) ) |
75 |
46 71 74
|
3eqtr3d |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( I ` V ) ) ) |