Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcclem.b |
|- B = ( Base ` K ) |
2 |
|
dihjatcclem.l |
|- .<_ = ( le ` K ) |
3 |
|
dihjatcclem.h |
|- H = ( LHyp ` K ) |
4 |
|
dihjatcclem.j |
|- .\/ = ( join ` K ) |
5 |
|
dihjatcclem.m |
|- ./\ = ( meet ` K ) |
6 |
|
dihjatcclem.a |
|- A = ( Atoms ` K ) |
7 |
|
dihjatcclem.u |
|- U = ( ( DVecH ` K ) ` W ) |
8 |
|
dihjatcclem.s |
|- .(+) = ( LSSum ` U ) |
9 |
|
dihjatcclem.i |
|- I = ( ( DIsoH ` K ) ` W ) |
10 |
|
dihjatcclem.v |
|- V = ( ( P .\/ Q ) ./\ W ) |
11 |
|
dihjatcclem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
dihjatcclem.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
13 |
|
dihjatcclem.q |
|- ( ph -> ( Q e. A /\ -. Q .<_ W ) ) |
14 |
|
dihjatcclem2.c |
|- ( ph -> ( I ` V ) C_ ( ( I ` P ) .(+) ( I ` Q ) ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dihjatcclem1 |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( I ` V ) ) ) |
16 |
3 7 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
17 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
18 |
17
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
19 |
16 18
|
syl |
|- ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
20 |
12
|
simpld |
|- ( ph -> P e. A ) |
21 |
1 6
|
atbase |
|- ( P e. A -> P e. B ) |
22 |
20 21
|
syl |
|- ( ph -> P e. B ) |
23 |
1 3 9 7 17
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. B ) -> ( I ` P ) e. ( LSubSp ` U ) ) |
24 |
11 22 23
|
syl2anc |
|- ( ph -> ( I ` P ) e. ( LSubSp ` U ) ) |
25 |
13
|
simpld |
|- ( ph -> Q e. A ) |
26 |
1 6
|
atbase |
|- ( Q e. A -> Q e. B ) |
27 |
25 26
|
syl |
|- ( ph -> Q e. B ) |
28 |
1 3 9 7 17
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. B ) -> ( I ` Q ) e. ( LSubSp ` U ) ) |
29 |
11 27 28
|
syl2anc |
|- ( ph -> ( I ` Q ) e. ( LSubSp ` U ) ) |
30 |
17 8
|
lsmcl |
|- ( ( U e. LMod /\ ( I ` P ) e. ( LSubSp ` U ) /\ ( I ` Q ) e. ( LSubSp ` U ) ) -> ( ( I ` P ) .(+) ( I ` Q ) ) e. ( LSubSp ` U ) ) |
31 |
16 24 29 30
|
syl3anc |
|- ( ph -> ( ( I ` P ) .(+) ( I ` Q ) ) e. ( LSubSp ` U ) ) |
32 |
19 31
|
sseldd |
|- ( ph -> ( ( I ` P ) .(+) ( I ` Q ) ) e. ( SubGrp ` U ) ) |
33 |
10
|
fveq2i |
|- ( I ` V ) = ( I ` ( ( P .\/ Q ) ./\ W ) ) |
34 |
11
|
simpld |
|- ( ph -> K e. HL ) |
35 |
34
|
hllatd |
|- ( ph -> K e. Lat ) |
36 |
1 4 6
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B ) |
37 |
34 20 25 36
|
syl3anc |
|- ( ph -> ( P .\/ Q ) e. B ) |
38 |
11
|
simprd |
|- ( ph -> W e. H ) |
39 |
1 3
|
lhpbase |
|- ( W e. H -> W e. B ) |
40 |
38 39
|
syl |
|- ( ph -> W e. B ) |
41 |
1 5
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. B /\ W e. B ) -> ( ( P .\/ Q ) ./\ W ) e. B ) |
42 |
35 37 40 41
|
syl3anc |
|- ( ph -> ( ( P .\/ Q ) ./\ W ) e. B ) |
43 |
1 3 9 7 17
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P .\/ Q ) ./\ W ) e. B ) -> ( I ` ( ( P .\/ Q ) ./\ W ) ) e. ( LSubSp ` U ) ) |
44 |
11 42 43
|
syl2anc |
|- ( ph -> ( I ` ( ( P .\/ Q ) ./\ W ) ) e. ( LSubSp ` U ) ) |
45 |
33 44
|
eqeltrid |
|- ( ph -> ( I ` V ) e. ( LSubSp ` U ) ) |
46 |
19 45
|
sseldd |
|- ( ph -> ( I ` V ) e. ( SubGrp ` U ) ) |
47 |
8
|
lsmss2 |
|- ( ( ( ( I ` P ) .(+) ( I ` Q ) ) e. ( SubGrp ` U ) /\ ( I ` V ) e. ( SubGrp ` U ) /\ ( I ` V ) C_ ( ( I ` P ) .(+) ( I ` Q ) ) ) -> ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( I ` V ) ) = ( ( I ` P ) .(+) ( I ` Q ) ) ) |
48 |
32 46 14 47
|
syl3anc |
|- ( ph -> ( ( ( I ` P ) .(+) ( I ` Q ) ) .(+) ( I ` V ) ) = ( ( I ` P ) .(+) ( I ` Q ) ) ) |
49 |
15 48
|
eqtrd |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( I ` P ) .(+) ( I ` Q ) ) ) |