| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihjatcclem.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | dihjatcclem.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | dihjatcclem.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | dihjatcclem.j |  |-  .\/ = ( join ` K ) | 
						
							| 5 |  | dihjatcclem.m |  |-  ./\ = ( meet ` K ) | 
						
							| 6 |  | dihjatcclem.a |  |-  A = ( Atoms ` K ) | 
						
							| 7 |  | dihjatcclem.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 8 |  | dihjatcclem.s |  |-  .(+) = ( LSSum ` U ) | 
						
							| 9 |  | dihjatcclem.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 10 |  | dihjatcclem.v |  |-  V = ( ( P .\/ Q ) ./\ W ) | 
						
							| 11 |  | dihjatcclem.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | dihjatcclem.p |  |-  ( ph -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 13 |  | dihjatcclem.q |  |-  ( ph -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 14 |  | dihjatcc.w |  |-  C = ( ( oc ` K ) ` W ) | 
						
							| 15 |  | dihjatcc.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 16 |  | dihjatcc.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 17 |  | dihjatcc.e |  |-  E = ( ( TEndo ` K ) ` W ) | 
						
							| 18 |  | dihjatcc.g |  |-  G = ( iota_ d e. T ( d ` C ) = P ) | 
						
							| 19 |  | dihjatcc.dd |  |-  D = ( iota_ d e. T ( d ` C ) = Q ) | 
						
							| 20 | 2 6 3 14 | lhpocnel2 |  |-  ( ( K e. HL /\ W e. H ) -> ( C e. A /\ -. C .<_ W ) ) | 
						
							| 21 | 11 20 | syl |  |-  ( ph -> ( C e. A /\ -. C .<_ W ) ) | 
						
							| 22 | 2 6 3 15 18 | ltrniotacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( C e. A /\ -. C .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> G e. T ) | 
						
							| 23 | 11 21 12 22 | syl3anc |  |-  ( ph -> G e. T ) | 
						
							| 24 | 2 6 3 15 19 | ltrniotacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( C e. A /\ -. C .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> D e. T ) | 
						
							| 25 | 11 21 13 24 | syl3anc |  |-  ( ph -> D e. T ) | 
						
							| 26 | 3 15 | ltrncnv |  |-  ( ( ( K e. HL /\ W e. H ) /\ D e. T ) -> `' D e. T ) | 
						
							| 27 | 11 25 26 | syl2anc |  |-  ( ph -> `' D e. T ) | 
						
							| 28 | 3 15 | ltrnco |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ `' D e. T ) -> ( G o. `' D ) e. T ) | 
						
							| 29 | 11 23 27 28 | syl3anc |  |-  ( ph -> ( G o. `' D ) e. T ) | 
						
							| 30 | 2 4 5 6 3 15 16 | trlval2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( G o. `' D ) e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( R ` ( G o. `' D ) ) = ( ( Q .\/ ( ( G o. `' D ) ` Q ) ) ./\ W ) ) | 
						
							| 31 | 11 29 13 30 | syl3anc |  |-  ( ph -> ( R ` ( G o. `' D ) ) = ( ( Q .\/ ( ( G o. `' D ) ` Q ) ) ./\ W ) ) | 
						
							| 32 | 13 | simpld |  |-  ( ph -> Q e. A ) | 
						
							| 33 | 2 6 3 15 | ltrncoval |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ `' D e. T ) /\ Q e. A ) -> ( ( G o. `' D ) ` Q ) = ( G ` ( `' D ` Q ) ) ) | 
						
							| 34 | 11 23 27 32 33 | syl121anc |  |-  ( ph -> ( ( G o. `' D ) ` Q ) = ( G ` ( `' D ` Q ) ) ) | 
						
							| 35 | 2 6 3 15 19 | ltrniotacnvval |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( C e. A /\ -. C .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( `' D ` Q ) = C ) | 
						
							| 36 | 11 21 13 35 | syl3anc |  |-  ( ph -> ( `' D ` Q ) = C ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ph -> ( G ` ( `' D ` Q ) ) = ( G ` C ) ) | 
						
							| 38 | 2 6 3 15 18 | ltrniotaval |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( C e. A /\ -. C .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( G ` C ) = P ) | 
						
							| 39 | 11 21 12 38 | syl3anc |  |-  ( ph -> ( G ` C ) = P ) | 
						
							| 40 | 37 39 | eqtrd |  |-  ( ph -> ( G ` ( `' D ` Q ) ) = P ) | 
						
							| 41 | 34 40 | eqtrd |  |-  ( ph -> ( ( G o. `' D ) ` Q ) = P ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ph -> ( Q .\/ ( ( G o. `' D ) ` Q ) ) = ( Q .\/ P ) ) | 
						
							| 43 | 11 | simpld |  |-  ( ph -> K e. HL ) | 
						
							| 44 | 12 | simpld |  |-  ( ph -> P e. A ) | 
						
							| 45 | 4 6 | hlatjcom |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 46 | 43 44 32 45 | syl3anc |  |-  ( ph -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 47 | 42 46 | eqtr4d |  |-  ( ph -> ( Q .\/ ( ( G o. `' D ) ` Q ) ) = ( P .\/ Q ) ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ph -> ( ( Q .\/ ( ( G o. `' D ) ` Q ) ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) ) | 
						
							| 49 | 48 10 | eqtr4di |  |-  ( ph -> ( ( Q .\/ ( ( G o. `' D ) ` Q ) ) ./\ W ) = V ) | 
						
							| 50 | 31 49 | eqtrd |  |-  ( ph -> ( R ` ( G o. `' D ) ) = V ) |