Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcclem.b |
|
2 |
|
dihjatcclem.l |
|
3 |
|
dihjatcclem.h |
|
4 |
|
dihjatcclem.j |
|
5 |
|
dihjatcclem.m |
|
6 |
|
dihjatcclem.a |
|
7 |
|
dihjatcclem.u |
|
8 |
|
dihjatcclem.s |
|
9 |
|
dihjatcclem.i |
|
10 |
|
dihjatcclem.v |
|
11 |
|
dihjatcclem.k |
|
12 |
|
dihjatcclem.p |
|
13 |
|
dihjatcclem.q |
|
14 |
|
dihjatcc.w |
|
15 |
|
dihjatcc.t |
|
16 |
|
dihjatcc.r |
|
17 |
|
dihjatcc.e |
|
18 |
|
dihjatcc.g |
|
19 |
|
dihjatcc.dd |
|
20 |
2 6 3 14
|
lhpocnel2 |
|
21 |
11 20
|
syl |
|
22 |
2 6 3 15 18
|
ltrniotacl |
|
23 |
11 21 12 22
|
syl3anc |
|
24 |
2 6 3 15 19
|
ltrniotacl |
|
25 |
11 21 13 24
|
syl3anc |
|
26 |
3 15
|
ltrncnv |
|
27 |
11 25 26
|
syl2anc |
|
28 |
3 15
|
ltrnco |
|
29 |
11 23 27 28
|
syl3anc |
|
30 |
2 4 5 6 3 15 16
|
trlval2 |
|
31 |
11 29 13 30
|
syl3anc |
|
32 |
13
|
simpld |
|
33 |
2 6 3 15
|
ltrncoval |
|
34 |
11 23 27 32 33
|
syl121anc |
|
35 |
2 6 3 15 19
|
ltrniotacnvval |
|
36 |
11 21 13 35
|
syl3anc |
|
37 |
36
|
fveq2d |
|
38 |
2 6 3 15 18
|
ltrniotaval |
|
39 |
11 21 12 38
|
syl3anc |
|
40 |
37 39
|
eqtrd |
|
41 |
34 40
|
eqtrd |
|
42 |
41
|
oveq2d |
|
43 |
11
|
simpld |
|
44 |
12
|
simpld |
|
45 |
4 6
|
hlatjcom |
|
46 |
43 44 32 45
|
syl3anc |
|
47 |
42 46
|
eqtr4d |
|
48 |
47
|
oveq1d |
|
49 |
48 10
|
eqtr4di |
|
50 |
31 49
|
eqtrd |
|