Metamath Proof Explorer


Theorem dihjatcclem3

Description: Lemma for dihjatcc . (Contributed by NM, 28-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b B=BaseK
dihjatcclem.l ˙=K
dihjatcclem.h H=LHypK
dihjatcclem.j ˙=joinK
dihjatcclem.m ˙=meetK
dihjatcclem.a A=AtomsK
dihjatcclem.u U=DVecHKW
dihjatcclem.s ˙=LSSumU
dihjatcclem.i I=DIsoHKW
dihjatcclem.v V=P˙Q˙W
dihjatcclem.k φKHLWH
dihjatcclem.p φPA¬P˙W
dihjatcclem.q φQA¬Q˙W
dihjatcc.w C=ocKW
dihjatcc.t T=LTrnKW
dihjatcc.r R=trLKW
dihjatcc.e E=TEndoKW
dihjatcc.g G=ιdT|dC=P
dihjatcc.dd D=ιdT|dC=Q
Assertion dihjatcclem3 φRGD-1=V

Proof

Step Hyp Ref Expression
1 dihjatcclem.b B=BaseK
2 dihjatcclem.l ˙=K
3 dihjatcclem.h H=LHypK
4 dihjatcclem.j ˙=joinK
5 dihjatcclem.m ˙=meetK
6 dihjatcclem.a A=AtomsK
7 dihjatcclem.u U=DVecHKW
8 dihjatcclem.s ˙=LSSumU
9 dihjatcclem.i I=DIsoHKW
10 dihjatcclem.v V=P˙Q˙W
11 dihjatcclem.k φKHLWH
12 dihjatcclem.p φPA¬P˙W
13 dihjatcclem.q φQA¬Q˙W
14 dihjatcc.w C=ocKW
15 dihjatcc.t T=LTrnKW
16 dihjatcc.r R=trLKW
17 dihjatcc.e E=TEndoKW
18 dihjatcc.g G=ιdT|dC=P
19 dihjatcc.dd D=ιdT|dC=Q
20 2 6 3 14 lhpocnel2 KHLWHCA¬C˙W
21 11 20 syl φCA¬C˙W
22 2 6 3 15 18 ltrniotacl KHLWHCA¬C˙WPA¬P˙WGT
23 11 21 12 22 syl3anc φGT
24 2 6 3 15 19 ltrniotacl KHLWHCA¬C˙WQA¬Q˙WDT
25 11 21 13 24 syl3anc φDT
26 3 15 ltrncnv KHLWHDTD-1T
27 11 25 26 syl2anc φD-1T
28 3 15 ltrnco KHLWHGTD-1TGD-1T
29 11 23 27 28 syl3anc φGD-1T
30 2 4 5 6 3 15 16 trlval2 KHLWHGD-1TQA¬Q˙WRGD-1=Q˙GD-1Q˙W
31 11 29 13 30 syl3anc φRGD-1=Q˙GD-1Q˙W
32 13 simpld φQA
33 2 6 3 15 ltrncoval KHLWHGTD-1TQAGD-1Q=GD-1Q
34 11 23 27 32 33 syl121anc φGD-1Q=GD-1Q
35 2 6 3 15 19 ltrniotacnvval KHLWHCA¬C˙WQA¬Q˙WD-1Q=C
36 11 21 13 35 syl3anc φD-1Q=C
37 36 fveq2d φGD-1Q=GC
38 2 6 3 15 18 ltrniotaval KHLWHCA¬C˙WPA¬P˙WGC=P
39 11 21 12 38 syl3anc φGC=P
40 37 39 eqtrd φGD-1Q=P
41 34 40 eqtrd φGD-1Q=P
42 41 oveq2d φQ˙GD-1Q=Q˙P
43 11 simpld φKHL
44 12 simpld φPA
45 4 6 hlatjcom KHLPAQAP˙Q=Q˙P
46 43 44 32 45 syl3anc φP˙Q=Q˙P
47 42 46 eqtr4d φQ˙GD-1Q=P˙Q
48 47 oveq1d φQ˙GD-1Q˙W=P˙Q˙W
49 48 10 eqtr4di φQ˙GD-1Q˙W=V
50 31 49 eqtrd φRGD-1=V