Description: Lemma for dihjatcc . (Contributed by NM, 28-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihjatcclem.b | |
|
dihjatcclem.l | |
||
dihjatcclem.h | |
||
dihjatcclem.j | |
||
dihjatcclem.m | |
||
dihjatcclem.a | |
||
dihjatcclem.u | |
||
dihjatcclem.s | |
||
dihjatcclem.i | |
||
dihjatcclem.v | |
||
dihjatcclem.k | |
||
dihjatcclem.p | |
||
dihjatcclem.q | |
||
dihjatcc.w | |
||
dihjatcc.t | |
||
dihjatcc.r | |
||
dihjatcc.e | |
||
dihjatcc.g | |
||
dihjatcc.dd | |
||
Assertion | dihjatcclem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatcclem.b | |
|
2 | dihjatcclem.l | |
|
3 | dihjatcclem.h | |
|
4 | dihjatcclem.j | |
|
5 | dihjatcclem.m | |
|
6 | dihjatcclem.a | |
|
7 | dihjatcclem.u | |
|
8 | dihjatcclem.s | |
|
9 | dihjatcclem.i | |
|
10 | dihjatcclem.v | |
|
11 | dihjatcclem.k | |
|
12 | dihjatcclem.p | |
|
13 | dihjatcclem.q | |
|
14 | dihjatcc.w | |
|
15 | dihjatcc.t | |
|
16 | dihjatcc.r | |
|
17 | dihjatcc.e | |
|
18 | dihjatcc.g | |
|
19 | dihjatcc.dd | |
|
20 | 2 6 3 14 | lhpocnel2 | |
21 | 11 20 | syl | |
22 | 2 6 3 15 18 | ltrniotacl | |
23 | 11 21 12 22 | syl3anc | |
24 | 2 6 3 15 19 | ltrniotacl | |
25 | 11 21 13 24 | syl3anc | |
26 | 3 15 | ltrncnv | |
27 | 11 25 26 | syl2anc | |
28 | 3 15 | ltrnco | |
29 | 11 23 27 28 | syl3anc | |
30 | 2 4 5 6 3 15 16 | trlval2 | |
31 | 11 29 13 30 | syl3anc | |
32 | 13 | simpld | |
33 | 2 6 3 15 | ltrncoval | |
34 | 11 23 27 32 33 | syl121anc | |
35 | 2 6 3 15 19 | ltrniotacnvval | |
36 | 11 21 13 35 | syl3anc | |
37 | 36 | fveq2d | |
38 | 2 6 3 15 18 | ltrniotaval | |
39 | 11 21 12 38 | syl3anc | |
40 | 37 39 | eqtrd | |
41 | 34 40 | eqtrd | |
42 | 41 | oveq2d | |
43 | 11 | simpld | |
44 | 12 | simpld | |
45 | 4 6 | hlatjcom | |
46 | 43 44 32 45 | syl3anc | |
47 | 42 46 | eqtr4d | |
48 | 47 | oveq1d | |
49 | 48 10 | eqtr4di | |
50 | 31 49 | eqtrd | |