Metamath Proof Explorer


Theorem dihjatcclem4

Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b B = Base K
dihjatcclem.l ˙ = K
dihjatcclem.h H = LHyp K
dihjatcclem.j ˙ = join K
dihjatcclem.m ˙ = meet K
dihjatcclem.a A = Atoms K
dihjatcclem.u U = DVecH K W
dihjatcclem.s ˙ = LSSum U
dihjatcclem.i I = DIsoH K W
dihjatcclem.v V = P ˙ Q ˙ W
dihjatcclem.k φ K HL W H
dihjatcclem.p φ P A ¬ P ˙ W
dihjatcclem.q φ Q A ¬ Q ˙ W
dihjatcc.w C = oc K W
dihjatcc.t T = LTrn K W
dihjatcc.r R = trL K W
dihjatcc.e E = TEndo K W
dihjatcc.g G = ι d T | d C = P
dihjatcc.dd D = ι d T | d C = Q
dihjatcc.n N = a E d T a d -1
dihjatcc.o 0 ˙ = d T I B
dihjatcc.d J = a E , b E d T a d b d
Assertion dihjatcclem4 φ I V I P ˙ I Q

Proof

Step Hyp Ref Expression
1 dihjatcclem.b B = Base K
2 dihjatcclem.l ˙ = K
3 dihjatcclem.h H = LHyp K
4 dihjatcclem.j ˙ = join K
5 dihjatcclem.m ˙ = meet K
6 dihjatcclem.a A = Atoms K
7 dihjatcclem.u U = DVecH K W
8 dihjatcclem.s ˙ = LSSum U
9 dihjatcclem.i I = DIsoH K W
10 dihjatcclem.v V = P ˙ Q ˙ W
11 dihjatcclem.k φ K HL W H
12 dihjatcclem.p φ P A ¬ P ˙ W
13 dihjatcclem.q φ Q A ¬ Q ˙ W
14 dihjatcc.w C = oc K W
15 dihjatcc.t T = LTrn K W
16 dihjatcc.r R = trL K W
17 dihjatcc.e E = TEndo K W
18 dihjatcc.g G = ι d T | d C = P
19 dihjatcc.dd D = ι d T | d C = Q
20 dihjatcc.n N = a E d T a d -1
21 dihjatcc.o 0 ˙ = d T I B
22 dihjatcc.d J = a E , b E d T a d b d
23 3 9 dihvalrel K HL W H Rel I V
24 11 23 syl φ Rel I V
25 11 adantr φ f T R f ˙ V s = 0 ˙ K HL W H
26 2 6 3 14 lhpocnel2 K HL W H C A ¬ C ˙ W
27 11 26 syl φ C A ¬ C ˙ W
28 2 6 3 15 18 ltrniotacl K HL W H C A ¬ C ˙ W P A ¬ P ˙ W G T
29 11 27 12 28 syl3anc φ G T
30 2 6 3 15 19 ltrniotacl K HL W H C A ¬ C ˙ W Q A ¬ Q ˙ W D T
31 11 27 13 30 syl3anc φ D T
32 3 15 ltrncnv K HL W H D T D -1 T
33 11 31 32 syl2anc φ D -1 T
34 3 15 ltrnco K HL W H G T D -1 T G D -1 T
35 11 29 33 34 syl3anc φ G D -1 T
36 35 adantr φ f T R f ˙ V s = 0 ˙ G D -1 T
37 simprll φ f T R f ˙ V s = 0 ˙ f T
38 simprlr φ f T R f ˙ V s = 0 ˙ R f ˙ V
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 dihjatcclem3 φ R G D -1 = V
40 39 adantr φ f T R f ˙ V s = 0 ˙ R G D -1 = V
41 38 40 breqtrrd φ f T R f ˙ V s = 0 ˙ R f ˙ R G D -1
42 2 3 15 16 17 tendoex K HL W H G D -1 T f T R f ˙ R G D -1 t E t G D -1 = f
43 25 36 37 41 42 syl121anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f
44 df-rex t E t G D -1 = f t t E t G D -1 = f
45 43 44 sylib φ f T R f ˙ V s = 0 ˙ t t E t G D -1 = f
46 eqidd φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t G = t G
47 simprl φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t E
48 11 ad2antrr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f K HL W H
49 12 ad2antrr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f P A ¬ P ˙ W
50 fvex t G V
51 vex t V
52 2 6 3 14 15 17 9 18 50 51 dihopelvalcqat K HL W H P A ¬ P ˙ W t G t I P t G = t G t E
53 48 49 52 syl2anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t G t I P t G = t G t E
54 46 47 53 mpbir2and φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t G t I P
55 eqidd φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f N t D = N t D
56 3 15 17 20 tendoicl K HL W H t E N t E
57 48 47 56 syl2anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f N t E
58 13 ad2antrr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f Q A ¬ Q ˙ W
59 fvex N t D V
60 fvex N t V
61 2 6 3 14 15 17 9 19 59 60 dihopelvalcqat K HL W H Q A ¬ Q ˙ W N t D N t I Q N t D = N t D N t E
62 48 58 61 syl2anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f N t D N t I Q N t D = N t D N t E
63 55 57 62 mpbir2and φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f N t D N t I Q
64 29 ad2antrr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f G T
65 33 ad2antrr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f D -1 T
66 3 15 17 tendospdi1 K HL W H t E G T D -1 T t G D -1 = t G t D -1
67 48 47 64 65 66 syl13anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t G D -1 = t G t D -1
68 simprr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t G D -1 = f
69 31 ad2antrr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f D T
70 20 15 tendoi2 t E D T N t D = t D -1
71 47 69 70 syl2anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f N t D = t D -1
72 3 15 17 tendocnv K HL W H t E D T t D -1 = t D -1
73 48 47 69 72 syl3anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t D -1 = t D -1
74 71 73 eqtr2d φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t D -1 = N t D
75 74 coeq2d φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t G t D -1 = t G N t D
76 67 68 75 3eqtr3d φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f f = t G N t D
77 simplrr φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f s = 0 ˙
78 3 15 17 20 1 22 21 tendoipl2 K HL W H t E t J N t = 0 ˙
79 48 47 78 syl2anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f t J N t = 0 ˙
80 77 79 eqtr4d φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f s = t J N t
81 opeq1 g = t G g t = t G t
82 81 eleq1d g = t G g t I P t G t I P
83 82 anbi1d g = t G g t I P h u I Q t G t I P h u I Q
84 coeq1 g = t G g h = t G h
85 84 eqeq2d g = t G f = g h f = t G h
86 85 anbi1d g = t G f = g h s = t J u f = t G h s = t J u
87 83 86 anbi12d g = t G g t I P h u I Q f = g h s = t J u t G t I P h u I Q f = t G h s = t J u
88 opeq1 h = N t D h u = N t D u
89 88 eleq1d h = N t D h u I Q N t D u I Q
90 89 anbi2d h = N t D t G t I P h u I Q t G t I P N t D u I Q
91 coeq2 h = N t D t G h = t G N t D
92 91 eqeq2d h = N t D f = t G h f = t G N t D
93 92 anbi1d h = N t D f = t G h s = t J u f = t G N t D s = t J u
94 90 93 anbi12d h = N t D t G t I P h u I Q f = t G h s = t J u t G t I P N t D u I Q f = t G N t D s = t J u
95 opeq2 u = N t N t D u = N t D N t
96 95 eleq1d u = N t N t D u I Q N t D N t I Q
97 96 anbi2d u = N t t G t I P N t D u I Q t G t I P N t D N t I Q
98 oveq2 u = N t t J u = t J N t
99 98 eqeq2d u = N t s = t J u s = t J N t
100 99 anbi2d u = N t f = t G N t D s = t J u f = t G N t D s = t J N t
101 97 100 anbi12d u = N t t G t I P N t D u I Q f = t G N t D s = t J u t G t I P N t D N t I Q f = t G N t D s = t J N t
102 87 94 101 syl3an9b g = t G h = N t D u = N t g t I P h u I Q f = g h s = t J u t G t I P N t D N t I Q f = t G N t D s = t J N t
103 102 spc3egv t G V N t D V N t V t G t I P N t D N t I Q f = t G N t D s = t J N t g h u g t I P h u I Q f = g h s = t J u
104 50 59 60 103 mp3an t G t I P N t D N t I Q f = t G N t D s = t J N t g h u g t I P h u I Q f = g h s = t J u
105 54 63 76 80 104 syl22anc φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f g h u g t I P h u I Q f = g h s = t J u
106 105 ex φ f T R f ˙ V s = 0 ˙ t E t G D -1 = f g h u g t I P h u I Q f = g h s = t J u
107 106 eximdv φ f T R f ˙ V s = 0 ˙ t t E t G D -1 = f t g h u g t I P h u I Q f = g h s = t J u
108 excom t g h u g t I P h u I Q f = g h s = t J u g t h u g t I P h u I Q f = g h s = t J u
109 107 108 syl6ib φ f T R f ˙ V s = 0 ˙ t t E t G D -1 = f g t h u g t I P h u I Q f = g h s = t J u
110 45 109 mpd φ f T R f ˙ V s = 0 ˙ g t h u g t I P h u I Q f = g h s = t J u
111 110 ex φ f T R f ˙ V s = 0 ˙ g t h u g t I P h u I Q f = g h s = t J u
112 11 simpld φ K HL
113 112 hllatd φ K Lat
114 12 simpld φ P A
115 13 simpld φ Q A
116 1 4 6 hlatjcl K HL P A Q A P ˙ Q B
117 112 114 115 116 syl3anc φ P ˙ Q B
118 11 simprd φ W H
119 1 3 lhpbase W H W B
120 118 119 syl φ W B
121 1 5 latmcl K Lat P ˙ Q B W B P ˙ Q ˙ W B
122 113 117 120 121 syl3anc φ P ˙ Q ˙ W B
123 10 122 eqeltrid φ V B
124 1 2 5 latmle2 K Lat P ˙ Q B W B P ˙ Q ˙ W ˙ W
125 113 117 120 124 syl3anc φ P ˙ Q ˙ W ˙ W
126 10 125 eqbrtrid φ V ˙ W
127 eqid DIsoB K W = DIsoB K W
128 1 2 3 9 127 dihvalb K HL W H V B V ˙ W I V = DIsoB K W V
129 11 123 126 128 syl12anc φ I V = DIsoB K W V
130 129 eleq2d φ f s I V f s DIsoB K W V
131 1 2 3 15 16 21 127 dibopelval3 K HL W H V B V ˙ W f s DIsoB K W V f T R f ˙ V s = 0 ˙
132 11 123 126 131 syl12anc φ f s DIsoB K W V f T R f ˙ V s = 0 ˙
133 130 132 bitrd φ f s I V f T R f ˙ V s = 0 ˙
134 eqid LSubSp U = LSubSp U
135 1 6 atbase P A P B
136 114 135 syl φ P B
137 1 6 atbase Q A Q B
138 115 137 syl φ Q B
139 1 3 15 17 22 7 134 8 9 11 136 138 dihopellsm φ f s I P ˙ I Q g t h u g t I P h u I Q f = g h s = t J u
140 111 133 139 3imtr4d φ f s I V f s I P ˙ I Q
141 24 140 relssdv φ I V I P ˙ I Q