Metamath Proof Explorer


Theorem dihjatcclem4

Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b B=BaseK
dihjatcclem.l ˙=K
dihjatcclem.h H=LHypK
dihjatcclem.j ˙=joinK
dihjatcclem.m ˙=meetK
dihjatcclem.a A=AtomsK
dihjatcclem.u U=DVecHKW
dihjatcclem.s ˙=LSSumU
dihjatcclem.i I=DIsoHKW
dihjatcclem.v V=P˙Q˙W
dihjatcclem.k φKHLWH
dihjatcclem.p φPA¬P˙W
dihjatcclem.q φQA¬Q˙W
dihjatcc.w C=ocKW
dihjatcc.t T=LTrnKW
dihjatcc.r R=trLKW
dihjatcc.e E=TEndoKW
dihjatcc.g G=ιdT|dC=P
dihjatcc.dd D=ιdT|dC=Q
dihjatcc.n N=aEdTad-1
dihjatcc.o 0˙=dTIB
dihjatcc.d J=aE,bEdTadbd
Assertion dihjatcclem4 φIVIP˙IQ

Proof

Step Hyp Ref Expression
1 dihjatcclem.b B=BaseK
2 dihjatcclem.l ˙=K
3 dihjatcclem.h H=LHypK
4 dihjatcclem.j ˙=joinK
5 dihjatcclem.m ˙=meetK
6 dihjatcclem.a A=AtomsK
7 dihjatcclem.u U=DVecHKW
8 dihjatcclem.s ˙=LSSumU
9 dihjatcclem.i I=DIsoHKW
10 dihjatcclem.v V=P˙Q˙W
11 dihjatcclem.k φKHLWH
12 dihjatcclem.p φPA¬P˙W
13 dihjatcclem.q φQA¬Q˙W
14 dihjatcc.w C=ocKW
15 dihjatcc.t T=LTrnKW
16 dihjatcc.r R=trLKW
17 dihjatcc.e E=TEndoKW
18 dihjatcc.g G=ιdT|dC=P
19 dihjatcc.dd D=ιdT|dC=Q
20 dihjatcc.n N=aEdTad-1
21 dihjatcc.o 0˙=dTIB
22 dihjatcc.d J=aE,bEdTadbd
23 3 9 dihvalrel KHLWHRelIV
24 11 23 syl φRelIV
25 11 adantr φfTRf˙Vs=0˙KHLWH
26 2 6 3 14 lhpocnel2 KHLWHCA¬C˙W
27 11 26 syl φCA¬C˙W
28 2 6 3 15 18 ltrniotacl KHLWHCA¬C˙WPA¬P˙WGT
29 11 27 12 28 syl3anc φGT
30 2 6 3 15 19 ltrniotacl KHLWHCA¬C˙WQA¬Q˙WDT
31 11 27 13 30 syl3anc φDT
32 3 15 ltrncnv KHLWHDTD-1T
33 11 31 32 syl2anc φD-1T
34 3 15 ltrnco KHLWHGTD-1TGD-1T
35 11 29 33 34 syl3anc φGD-1T
36 35 adantr φfTRf˙Vs=0˙GD-1T
37 simprll φfTRf˙Vs=0˙fT
38 simprlr φfTRf˙Vs=0˙Rf˙V
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 dihjatcclem3 φRGD-1=V
40 39 adantr φfTRf˙Vs=0˙RGD-1=V
41 38 40 breqtrrd φfTRf˙Vs=0˙Rf˙RGD-1
42 2 3 15 16 17 tendoex KHLWHGD-1TfTRf˙RGD-1tEtGD-1=f
43 25 36 37 41 42 syl121anc φfTRf˙Vs=0˙tEtGD-1=f
44 df-rex tEtGD-1=fttEtGD-1=f
45 43 44 sylib φfTRf˙Vs=0˙ttEtGD-1=f
46 eqidd φfTRf˙Vs=0˙tEtGD-1=ftG=tG
47 simprl φfTRf˙Vs=0˙tEtGD-1=ftE
48 11 ad2antrr φfTRf˙Vs=0˙tEtGD-1=fKHLWH
49 12 ad2antrr φfTRf˙Vs=0˙tEtGD-1=fPA¬P˙W
50 fvex tGV
51 vex tV
52 2 6 3 14 15 17 9 18 50 51 dihopelvalcqat KHLWHPA¬P˙WtGtIPtG=tGtE
53 48 49 52 syl2anc φfTRf˙Vs=0˙tEtGD-1=ftGtIPtG=tGtE
54 46 47 53 mpbir2and φfTRf˙Vs=0˙tEtGD-1=ftGtIP
55 eqidd φfTRf˙Vs=0˙tEtGD-1=fNtD=NtD
56 3 15 17 20 tendoicl KHLWHtENtE
57 48 47 56 syl2anc φfTRf˙Vs=0˙tEtGD-1=fNtE
58 13 ad2antrr φfTRf˙Vs=0˙tEtGD-1=fQA¬Q˙W
59 fvex NtDV
60 fvex NtV
61 2 6 3 14 15 17 9 19 59 60 dihopelvalcqat KHLWHQA¬Q˙WNtDNtIQNtD=NtDNtE
62 48 58 61 syl2anc φfTRf˙Vs=0˙tEtGD-1=fNtDNtIQNtD=NtDNtE
63 55 57 62 mpbir2and φfTRf˙Vs=0˙tEtGD-1=fNtDNtIQ
64 29 ad2antrr φfTRf˙Vs=0˙tEtGD-1=fGT
65 33 ad2antrr φfTRf˙Vs=0˙tEtGD-1=fD-1T
66 3 15 17 tendospdi1 KHLWHtEGTD-1TtGD-1=tGtD-1
67 48 47 64 65 66 syl13anc φfTRf˙Vs=0˙tEtGD-1=ftGD-1=tGtD-1
68 simprr φfTRf˙Vs=0˙tEtGD-1=ftGD-1=f
69 31 ad2antrr φfTRf˙Vs=0˙tEtGD-1=fDT
70 20 15 tendoi2 tEDTNtD=tD-1
71 47 69 70 syl2anc φfTRf˙Vs=0˙tEtGD-1=fNtD=tD-1
72 3 15 17 tendocnv KHLWHtEDTtD-1=tD-1
73 48 47 69 72 syl3anc φfTRf˙Vs=0˙tEtGD-1=ftD-1=tD-1
74 71 73 eqtr2d φfTRf˙Vs=0˙tEtGD-1=ftD-1=NtD
75 74 coeq2d φfTRf˙Vs=0˙tEtGD-1=ftGtD-1=tGNtD
76 67 68 75 3eqtr3d φfTRf˙Vs=0˙tEtGD-1=ff=tGNtD
77 simplrr φfTRf˙Vs=0˙tEtGD-1=fs=0˙
78 3 15 17 20 1 22 21 tendoipl2 KHLWHtEtJNt=0˙
79 48 47 78 syl2anc φfTRf˙Vs=0˙tEtGD-1=ftJNt=0˙
80 77 79 eqtr4d φfTRf˙Vs=0˙tEtGD-1=fs=tJNt
81 opeq1 g=tGgt=tGt
82 81 eleq1d g=tGgtIPtGtIP
83 82 anbi1d g=tGgtIPhuIQtGtIPhuIQ
84 coeq1 g=tGgh=tGh
85 84 eqeq2d g=tGf=ghf=tGh
86 85 anbi1d g=tGf=ghs=tJuf=tGhs=tJu
87 83 86 anbi12d g=tGgtIPhuIQf=ghs=tJutGtIPhuIQf=tGhs=tJu
88 opeq1 h=NtDhu=NtDu
89 88 eleq1d h=NtDhuIQNtDuIQ
90 89 anbi2d h=NtDtGtIPhuIQtGtIPNtDuIQ
91 coeq2 h=NtDtGh=tGNtD
92 91 eqeq2d h=NtDf=tGhf=tGNtD
93 92 anbi1d h=NtDf=tGhs=tJuf=tGNtDs=tJu
94 90 93 anbi12d h=NtDtGtIPhuIQf=tGhs=tJutGtIPNtDuIQf=tGNtDs=tJu
95 opeq2 u=NtNtDu=NtDNt
96 95 eleq1d u=NtNtDuIQNtDNtIQ
97 96 anbi2d u=NttGtIPNtDuIQtGtIPNtDNtIQ
98 oveq2 u=NttJu=tJNt
99 98 eqeq2d u=Nts=tJus=tJNt
100 99 anbi2d u=Ntf=tGNtDs=tJuf=tGNtDs=tJNt
101 97 100 anbi12d u=NttGtIPNtDuIQf=tGNtDs=tJutGtIPNtDNtIQf=tGNtDs=tJNt
102 87 94 101 syl3an9b g=tGh=NtDu=NtgtIPhuIQf=ghs=tJutGtIPNtDNtIQf=tGNtDs=tJNt
103 102 spc3egv tGVNtDVNtVtGtIPNtDNtIQf=tGNtDs=tJNtghugtIPhuIQf=ghs=tJu
104 50 59 60 103 mp3an tGtIPNtDNtIQf=tGNtDs=tJNtghugtIPhuIQf=ghs=tJu
105 54 63 76 80 104 syl22anc φfTRf˙Vs=0˙tEtGD-1=fghugtIPhuIQf=ghs=tJu
106 105 ex φfTRf˙Vs=0˙tEtGD-1=fghugtIPhuIQf=ghs=tJu
107 106 eximdv φfTRf˙Vs=0˙ttEtGD-1=ftghugtIPhuIQf=ghs=tJu
108 excom tghugtIPhuIQf=ghs=tJugthugtIPhuIQf=ghs=tJu
109 107 108 imbitrdi φfTRf˙Vs=0˙ttEtGD-1=fgthugtIPhuIQf=ghs=tJu
110 45 109 mpd φfTRf˙Vs=0˙gthugtIPhuIQf=ghs=tJu
111 110 ex φfTRf˙Vs=0˙gthugtIPhuIQf=ghs=tJu
112 11 simpld φKHL
113 112 hllatd φKLat
114 12 simpld φPA
115 13 simpld φQA
116 1 4 6 hlatjcl KHLPAQAP˙QB
117 112 114 115 116 syl3anc φP˙QB
118 11 simprd φWH
119 1 3 lhpbase WHWB
120 118 119 syl φWB
121 1 5 latmcl KLatP˙QBWBP˙Q˙WB
122 113 117 120 121 syl3anc φP˙Q˙WB
123 10 122 eqeltrid φVB
124 1 2 5 latmle2 KLatP˙QBWBP˙Q˙W˙W
125 113 117 120 124 syl3anc φP˙Q˙W˙W
126 10 125 eqbrtrid φV˙W
127 eqid DIsoBKW=DIsoBKW
128 1 2 3 9 127 dihvalb KHLWHVBV˙WIV=DIsoBKWV
129 11 123 126 128 syl12anc φIV=DIsoBKWV
130 129 eleq2d φfsIVfsDIsoBKWV
131 1 2 3 15 16 21 127 dibopelval3 KHLWHVBV˙WfsDIsoBKWVfTRf˙Vs=0˙
132 11 123 126 131 syl12anc φfsDIsoBKWVfTRf˙Vs=0˙
133 130 132 bitrd φfsIVfTRf˙Vs=0˙
134 eqid LSubSpU=LSubSpU
135 1 6 atbase PAPB
136 114 135 syl φPB
137 1 6 atbase QAQB
138 115 137 syl φQB
139 1 3 15 17 22 7 134 8 9 11 136 138 dihopellsm φfsIP˙IQgthugtIPhuIQf=ghs=tJu
140 111 133 139 3imtr4d φfsIVfsIP˙IQ
141 24 140 relssdv φIVIP˙IQ