Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcclem.b |
|
2 |
|
dihjatcclem.l |
|
3 |
|
dihjatcclem.h |
|
4 |
|
dihjatcclem.j |
|
5 |
|
dihjatcclem.m |
|
6 |
|
dihjatcclem.a |
|
7 |
|
dihjatcclem.u |
|
8 |
|
dihjatcclem.s |
|
9 |
|
dihjatcclem.i |
|
10 |
|
dihjatcclem.v |
|
11 |
|
dihjatcclem.k |
|
12 |
|
dihjatcclem.p |
|
13 |
|
dihjatcclem.q |
|
14 |
|
dihjatcc.w |
|
15 |
|
dihjatcc.t |
|
16 |
|
dihjatcc.r |
|
17 |
|
dihjatcc.e |
|
18 |
|
dihjatcc.g |
|
19 |
|
dihjatcc.dd |
|
20 |
|
dihjatcc.n |
|
21 |
|
dihjatcc.o |
|
22 |
|
dihjatcc.d |
|
23 |
3 9
|
dihvalrel |
|
24 |
11 23
|
syl |
|
25 |
11
|
adantr |
|
26 |
2 6 3 14
|
lhpocnel2 |
|
27 |
11 26
|
syl |
|
28 |
2 6 3 15 18
|
ltrniotacl |
|
29 |
11 27 12 28
|
syl3anc |
|
30 |
2 6 3 15 19
|
ltrniotacl |
|
31 |
11 27 13 30
|
syl3anc |
|
32 |
3 15
|
ltrncnv |
|
33 |
11 31 32
|
syl2anc |
|
34 |
3 15
|
ltrnco |
|
35 |
11 29 33 34
|
syl3anc |
|
36 |
35
|
adantr |
|
37 |
|
simprll |
|
38 |
|
simprlr |
|
39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
dihjatcclem3 |
|
40 |
39
|
adantr |
|
41 |
38 40
|
breqtrrd |
|
42 |
2 3 15 16 17
|
tendoex |
|
43 |
25 36 37 41 42
|
syl121anc |
|
44 |
|
df-rex |
|
45 |
43 44
|
sylib |
|
46 |
|
eqidd |
|
47 |
|
simprl |
|
48 |
11
|
ad2antrr |
|
49 |
12
|
ad2antrr |
|
50 |
|
fvex |
|
51 |
|
vex |
|
52 |
2 6 3 14 15 17 9 18 50 51
|
dihopelvalcqat |
|
53 |
48 49 52
|
syl2anc |
|
54 |
46 47 53
|
mpbir2and |
|
55 |
|
eqidd |
|
56 |
3 15 17 20
|
tendoicl |
|
57 |
48 47 56
|
syl2anc |
|
58 |
13
|
ad2antrr |
|
59 |
|
fvex |
|
60 |
|
fvex |
|
61 |
2 6 3 14 15 17 9 19 59 60
|
dihopelvalcqat |
|
62 |
48 58 61
|
syl2anc |
|
63 |
55 57 62
|
mpbir2and |
|
64 |
29
|
ad2antrr |
|
65 |
33
|
ad2antrr |
|
66 |
3 15 17
|
tendospdi1 |
|
67 |
48 47 64 65 66
|
syl13anc |
|
68 |
|
simprr |
|
69 |
31
|
ad2antrr |
|
70 |
20 15
|
tendoi2 |
|
71 |
47 69 70
|
syl2anc |
|
72 |
3 15 17
|
tendocnv |
|
73 |
48 47 69 72
|
syl3anc |
|
74 |
71 73
|
eqtr2d |
|
75 |
74
|
coeq2d |
|
76 |
67 68 75
|
3eqtr3d |
|
77 |
|
simplrr |
|
78 |
3 15 17 20 1 22 21
|
tendoipl2 |
|
79 |
48 47 78
|
syl2anc |
|
80 |
77 79
|
eqtr4d |
|
81 |
|
opeq1 |
|
82 |
81
|
eleq1d |
|
83 |
82
|
anbi1d |
|
84 |
|
coeq1 |
|
85 |
84
|
eqeq2d |
|
86 |
85
|
anbi1d |
|
87 |
83 86
|
anbi12d |
|
88 |
|
opeq1 |
|
89 |
88
|
eleq1d |
|
90 |
89
|
anbi2d |
|
91 |
|
coeq2 |
|
92 |
91
|
eqeq2d |
|
93 |
92
|
anbi1d |
|
94 |
90 93
|
anbi12d |
|
95 |
|
opeq2 |
|
96 |
95
|
eleq1d |
|
97 |
96
|
anbi2d |
|
98 |
|
oveq2 |
|
99 |
98
|
eqeq2d |
|
100 |
99
|
anbi2d |
|
101 |
97 100
|
anbi12d |
|
102 |
87 94 101
|
syl3an9b |
|
103 |
102
|
spc3egv |
|
104 |
50 59 60 103
|
mp3an |
|
105 |
54 63 76 80 104
|
syl22anc |
|
106 |
105
|
ex |
|
107 |
106
|
eximdv |
|
108 |
|
excom |
|
109 |
107 108
|
syl6ib |
|
110 |
45 109
|
mpd |
|
111 |
110
|
ex |
|
112 |
11
|
simpld |
|
113 |
112
|
hllatd |
|
114 |
12
|
simpld |
|
115 |
13
|
simpld |
|
116 |
1 4 6
|
hlatjcl |
|
117 |
112 114 115 116
|
syl3anc |
|
118 |
11
|
simprd |
|
119 |
1 3
|
lhpbase |
|
120 |
118 119
|
syl |
|
121 |
1 5
|
latmcl |
|
122 |
113 117 120 121
|
syl3anc |
|
123 |
10 122
|
eqeltrid |
|
124 |
1 2 5
|
latmle2 |
|
125 |
113 117 120 124
|
syl3anc |
|
126 |
10 125
|
eqbrtrid |
|
127 |
|
eqid |
|
128 |
1 2 3 9 127
|
dihvalb |
|
129 |
11 123 126 128
|
syl12anc |
|
130 |
129
|
eleq2d |
|
131 |
1 2 3 15 16 21 127
|
dibopelval3 |
|
132 |
11 123 126 131
|
syl12anc |
|
133 |
130 132
|
bitrd |
|
134 |
|
eqid |
|
135 |
1 6
|
atbase |
|
136 |
114 135
|
syl |
|
137 |
1 6
|
atbase |
|
138 |
115 137
|
syl |
|
139 |
1 3 15 17 22 7 134 8 9 11 136 138
|
dihopellsm |
|
140 |
111 133 139
|
3imtr4d |
|
141 |
24 140
|
relssdv |
|