Metamath Proof Explorer


Theorem dihjatcc

Description: Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihjatcc.l ˙=K
dihjatcc.h H=LHypK
dihjatcc.j ˙=joinK
dihjatcc.a A=AtomsK
dihjatcc.u U=DVecHKW
dihjatcc.s ˙=LSSumU
dihjatcc.i I=DIsoHKW
dihjatcc.k φKHLWH
dihjatcc.p φPA¬P˙W
dihjatcc.q φQA¬Q˙W
Assertion dihjatcc φIP˙Q=IP˙IQ

Proof

Step Hyp Ref Expression
1 dihjatcc.l ˙=K
2 dihjatcc.h H=LHypK
3 dihjatcc.j ˙=joinK
4 dihjatcc.a A=AtomsK
5 dihjatcc.u U=DVecHKW
6 dihjatcc.s ˙=LSSumU
7 dihjatcc.i I=DIsoHKW
8 dihjatcc.k φKHLWH
9 dihjatcc.p φPA¬P˙W
10 dihjatcc.q φQA¬Q˙W
11 eqid BaseK=BaseK
12 eqid meetK=meetK
13 eqid P˙QmeetKW=P˙QmeetKW
14 eqid ocKW=ocKW
15 eqid LTrnKW=LTrnKW
16 eqid trLKW=trLKW
17 eqid TEndoKW=TEndoKW
18 eqid ιdLTrnKW|docKW=P=ιdLTrnKW|docKW=P
19 eqid ιdLTrnKW|docKW=Q=ιdLTrnKW|docKW=Q
20 eqid aTEndoKWdLTrnKWad-1=aTEndoKWdLTrnKWad-1
21 eqid dLTrnKWIBaseK=dLTrnKWIBaseK
22 eqid aTEndoKW,bTEndoKWdLTrnKWadbd=aTEndoKW,bTEndoKWdLTrnKWadbd
23 11 1 2 3 12 4 5 6 7 13 8 9 10 14 15 16 17 18 19 20 21 22 dihjatcclem4 φIP˙QmeetKWIP˙IQ
24 11 1 2 3 12 4 5 6 7 13 8 9 10 23 dihjatcclem2 φIP˙Q=IP˙IQ