Description: Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihjatcc.l | |
|
dihjatcc.h | |
||
dihjatcc.j | |
||
dihjatcc.a | |
||
dihjatcc.u | |
||
dihjatcc.s | |
||
dihjatcc.i | |
||
dihjatcc.k | |
||
dihjatcc.p | |
||
dihjatcc.q | |
||
Assertion | dihjatcc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatcc.l | |
|
2 | dihjatcc.h | |
|
3 | dihjatcc.j | |
|
4 | dihjatcc.a | |
|
5 | dihjatcc.u | |
|
6 | dihjatcc.s | |
|
7 | dihjatcc.i | |
|
8 | dihjatcc.k | |
|
9 | dihjatcc.p | |
|
10 | dihjatcc.q | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 11 1 2 3 12 4 5 6 7 13 8 9 10 14 15 16 17 18 19 20 21 22 | dihjatcclem4 | |
24 | 11 1 2 3 12 4 5 6 7 13 8 9 10 23 | dihjatcclem2 | |