Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat.h |
|
2 |
|
dihjat.j |
|
3 |
|
dihjat.a |
|
4 |
|
dihjat.u |
|
5 |
|
dihjat.s |
|
6 |
|
dihjat.i |
|
7 |
|
dihjat.k |
|
8 |
|
dihjat.p |
|
9 |
|
dihjat.q |
|
10 |
|
eqid |
|
11 |
7
|
adantr |
|
12 |
8
|
adantr |
|
13 |
|
simprl |
|
14 |
12 13
|
jca |
|
15 |
9
|
adantr |
|
16 |
|
simprr |
|
17 |
15 16
|
jca |
|
18 |
10 1 2 3 4 5 6 11 14 17
|
dihjatb |
|
19 |
|
eqid |
|
20 |
7
|
adantr |
|
21 |
19 3
|
atbase |
|
22 |
8 21
|
syl |
|
23 |
22
|
adantr |
|
24 |
|
simprl |
|
25 |
23 24
|
jca |
|
26 |
9
|
adantr |
|
27 |
|
simprr |
|
28 |
26 27
|
jca |
|
29 |
19 10 1 2 3 4 5 6 20 25 28
|
dihjatc |
|
30 |
7
|
adantr |
|
31 |
19 3
|
atbase |
|
32 |
9 31
|
syl |
|
33 |
32
|
adantr |
|
34 |
|
simprr |
|
35 |
33 34
|
jca |
|
36 |
8
|
adantr |
|
37 |
|
simprl |
|
38 |
36 37
|
jca |
|
39 |
19 10 1 2 3 4 5 6 30 35 38
|
dihjatc |
|
40 |
7
|
simpld |
|
41 |
2 3
|
hlatjcom |
|
42 |
40 8 9 41
|
syl3anc |
|
43 |
42
|
fveq2d |
|
44 |
43
|
adantr |
|
45 |
1 4 7
|
dvhlmod |
|
46 |
|
lmodabl |
|
47 |
45 46
|
syl |
|
48 |
|
eqid |
|
49 |
48
|
lsssssubg |
|
50 |
45 49
|
syl |
|
51 |
19 1 6 4 48
|
dihlss |
|
52 |
7 22 51
|
syl2anc |
|
53 |
50 52
|
sseldd |
|
54 |
19 1 6 4 48
|
dihlss |
|
55 |
7 32 54
|
syl2anc |
|
56 |
50 55
|
sseldd |
|
57 |
5
|
lsmcom |
|
58 |
47 53 56 57
|
syl3anc |
|
59 |
58
|
adantr |
|
60 |
39 44 59
|
3eqtr4d |
|
61 |
7
|
adantr |
|
62 |
8
|
adantr |
|
63 |
|
simprl |
|
64 |
62 63
|
jca |
|
65 |
9
|
adantr |
|
66 |
|
simprr |
|
67 |
65 66
|
jca |
|
68 |
10 1 2 3 4 5 6 61 64 67
|
dihjatcc |
|
69 |
18 29 60 68
|
4casesdan |
|