Description: Lemma for dihprrn , showing one of 4 cases. (Contributed by NM, 30-Aug-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihprrn.h | |
|
dihprrn.u | |
||
dihprrn.v | |
||
dihprrn.n | |
||
dihprrn.i | |
||
dihprrn.k | |
||
dihprrn.x | |
||
dihprrn.y | |
||
dihprrnlem1.l | |
||
dihprrnlem1.o | |
||
dihprrnlem1.nz | |
||
dihprrnlem1.x | |
||
dihprrnlem1.y | |
||
Assertion | dihprrnlem1N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihprrn.h | |
|
2 | dihprrn.u | |
|
3 | dihprrn.v | |
|
4 | dihprrn.n | |
|
5 | dihprrn.i | |
|
6 | dihprrn.k | |
|
7 | dihprrn.x | |
|
8 | dihprrn.y | |
|
9 | dihprrnlem1.l | |
|
10 | dihprrnlem1.o | |
|
11 | dihprrnlem1.nz | |
|
12 | dihprrnlem1.x | |
|
13 | dihprrnlem1.y | |
|
14 | df-pr | |
|
15 | 14 | fveq2i | |
16 | eqid | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 1 2 3 4 5 | dihlsprn | |
21 | 6 7 20 | syl2anc | |
22 | 16 1 5 | dihcnvcl | |
23 | 6 21 22 | syl2anc | |
24 | 23 12 | jca | |
25 | 18 1 2 3 10 4 5 | dihlspsnat | |
26 | 6 8 11 25 | syl3anc | |
27 | 26 13 | jca | |
28 | 16 9 1 17 18 2 19 5 6 24 27 | dihjatc | |
29 | 1 5 | dihcnvid2 | |
30 | 6 21 29 | syl2anc | |
31 | 1 2 3 4 5 | dihlsprn | |
32 | 6 8 31 | syl2anc | |
33 | 1 5 | dihcnvid2 | |
34 | 6 32 33 | syl2anc | |
35 | 30 34 | oveq12d | |
36 | 1 2 6 | dvhlmod | |
37 | 7 | snssd | |
38 | 8 | snssd | |
39 | 3 4 19 | lsmsp2 | |
40 | 36 37 38 39 | syl3anc | |
41 | 28 35 40 | 3eqtrrd | |
42 | 15 41 | eqtrid | |
43 | 6 | simpld | |
44 | 43 | hllatd | |
45 | 16 1 5 | dihcnvcl | |
46 | 6 32 45 | syl2anc | |
47 | 16 17 | latjcl | |
48 | 44 23 46 47 | syl3anc | |
49 | 16 1 5 | dihcl | |
50 | 6 48 49 | syl2anc | |
51 | 42 50 | eqeltrd | |