Metamath Proof Explorer


Theorem dihprrnlem1N

Description: Lemma for dihprrn , showing one of 4 cases. (Contributed by NM, 30-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihprrn.h H=LHypK
dihprrn.u U=DVecHKW
dihprrn.v V=BaseU
dihprrn.n N=LSpanU
dihprrn.i I=DIsoHKW
dihprrn.k φKHLWH
dihprrn.x φXV
dihprrn.y φYV
dihprrnlem1.l ˙=K
dihprrnlem1.o 0˙=0U
dihprrnlem1.nz φY0˙
dihprrnlem1.x φI-1NX˙W
dihprrnlem1.y φ¬I-1NY˙W
Assertion dihprrnlem1N φNXYranI

Proof

Step Hyp Ref Expression
1 dihprrn.h H=LHypK
2 dihprrn.u U=DVecHKW
3 dihprrn.v V=BaseU
4 dihprrn.n N=LSpanU
5 dihprrn.i I=DIsoHKW
6 dihprrn.k φKHLWH
7 dihprrn.x φXV
8 dihprrn.y φYV
9 dihprrnlem1.l ˙=K
10 dihprrnlem1.o 0˙=0U
11 dihprrnlem1.nz φY0˙
12 dihprrnlem1.x φI-1NX˙W
13 dihprrnlem1.y φ¬I-1NY˙W
14 df-pr XY=XY
15 14 fveq2i NXY=NXY
16 eqid BaseK=BaseK
17 eqid joinK=joinK
18 eqid AtomsK=AtomsK
19 eqid LSSumU=LSSumU
20 1 2 3 4 5 dihlsprn KHLWHXVNXranI
21 6 7 20 syl2anc φNXranI
22 16 1 5 dihcnvcl KHLWHNXranII-1NXBaseK
23 6 21 22 syl2anc φI-1NXBaseK
24 23 12 jca φI-1NXBaseKI-1NX˙W
25 18 1 2 3 10 4 5 dihlspsnat KHLWHYVY0˙I-1NYAtomsK
26 6 8 11 25 syl3anc φI-1NYAtomsK
27 26 13 jca φI-1NYAtomsK¬I-1NY˙W
28 16 9 1 17 18 2 19 5 6 24 27 dihjatc φII-1NXjoinKI-1NY=II-1NXLSSumUII-1NY
29 1 5 dihcnvid2 KHLWHNXranIII-1NX=NX
30 6 21 29 syl2anc φII-1NX=NX
31 1 2 3 4 5 dihlsprn KHLWHYVNYranI
32 6 8 31 syl2anc φNYranI
33 1 5 dihcnvid2 KHLWHNYranIII-1NY=NY
34 6 32 33 syl2anc φII-1NY=NY
35 30 34 oveq12d φII-1NXLSSumUII-1NY=NXLSSumUNY
36 1 2 6 dvhlmod φULMod
37 7 snssd φXV
38 8 snssd φYV
39 3 4 19 lsmsp2 ULModXVYVNXLSSumUNY=NXY
40 36 37 38 39 syl3anc φNXLSSumUNY=NXY
41 28 35 40 3eqtrrd φNXY=II-1NXjoinKI-1NY
42 15 41 eqtrid φNXY=II-1NXjoinKI-1NY
43 6 simpld φKHL
44 43 hllatd φKLat
45 16 1 5 dihcnvcl KHLWHNYranII-1NYBaseK
46 6 32 45 syl2anc φI-1NYBaseK
47 16 17 latjcl KLatI-1NXBaseKI-1NYBaseKI-1NXjoinKI-1NYBaseK
48 44 23 46 47 syl3anc φI-1NXjoinKI-1NYBaseK
49 16 1 5 dihcl KHLWHI-1NXjoinKI-1NYBaseKII-1NXjoinKI-1NYranI
50 6 48 49 syl2anc φII-1NXjoinKI-1NYranI
51 42 50 eqeltrd φNXYranI