Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihjat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dihjat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
dihjat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihjat.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
6 |
|
dihjat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dihjat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dihjat.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
9 |
|
dihjat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
10 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑃 ( le ‘ 𝐾 ) 𝑊 ) |
14 |
12 13
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ 𝑃 ( le ‘ 𝐾 ) 𝑊 ) ) |
15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑄 ( le ‘ 𝐾 ) 𝑊 ) |
17 |
15 16
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) |
18 |
10 1 2 3 4 5 6 11 14 17
|
dihjatb |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
19 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
22 |
8 21
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
24 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑃 ( le ‘ 𝐾 ) 𝑊 ) |
25 |
23 24
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ( le ‘ 𝐾 ) 𝑊 ) ) |
26 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) |
28 |
26 27
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) |
29 |
19 10 1 2 3 4 5 6 20 25 28
|
dihjatc |
⊢ ( ( 𝜑 ∧ ( 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
19 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
32 |
9 31
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
34 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑄 ( le ‘ 𝐾 ) 𝑊 ) |
35 |
33 34
|
jca |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) |
36 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
37 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ) |
38 |
36 37
|
jca |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ) ) |
39 |
19 10 1 2 3 4 5 6 30 35 38
|
dihjatc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑄 ∨ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
40 |
7
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
41 |
2 3
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
42 |
40 8 9 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
43 |
42
|
fveq2d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( 𝐼 ‘ ( 𝑄 ∨ 𝑃 ) ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( 𝐼 ‘ ( 𝑄 ∨ 𝑃 ) ) ) |
45 |
1 4 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
46 |
|
lmodabl |
⊢ ( 𝑈 ∈ LMod → 𝑈 ∈ Abel ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Abel ) |
48 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
49 |
48
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
50 |
45 49
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
51 |
19 1 6 4 48
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
52 |
7 22 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
53 |
50 52
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
54 |
19 1 6 4 48
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
55 |
7 32 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
56 |
50 55
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
57 |
5
|
lsmcom |
⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝐼 ‘ 𝑃 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
58 |
47 53 56 57
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
60 |
39 44 59
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |
61 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
62 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
63 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ) |
64 |
62 63
|
jca |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ) ) |
65 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
66 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) |
67 |
65 66
|
jca |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) |
68 |
10 1 2 3 4 5 6 61 64 67
|
dihjatcc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |
69 |
18 29 60 68
|
4casesdan |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |