| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjatc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihjatc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihjatc.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihjatc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 5 |
|
dihjatc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
dihjatc.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dihjatc.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 8 |
|
dihjatc.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
dihjatc.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
dihjatc.x |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
| 11 |
|
dihjatc.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 12 |
9
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 13 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OP ) |
| 15 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
| 16 |
1 15
|
op1cl |
⊢ ( 𝐾 ∈ OP → ( 1. ‘ 𝐾 ) ∈ 𝐵 ) |
| 17 |
14 16
|
syl |
⊢ ( 𝜑 → ( 1. ‘ 𝐾 ) ∈ 𝐵 ) |
| 18 |
10
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 19 |
11
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 20 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 22 |
1 2 15
|
ople1 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ≤ ( 1. ‘ 𝐾 ) ) |
| 23 |
14 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ≤ ( 1. ‘ 𝐾 ) ) |
| 24 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 25 |
12 24
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OL ) |
| 26 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 27 |
1 26 15
|
olm12 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑋 ) |
| 28 |
25 18 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑋 ) |
| 29 |
10
|
simprd |
⊢ ( 𝜑 → 𝑋 ≤ 𝑊 ) |
| 30 |
28 29
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ≤ 𝑊 ) |
| 31 |
1 2 3 4 26 5 6 7 8
|
dihjatc3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 1. ‘ 𝐾 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑃 ≤ ( 1. ‘ 𝐾 ) ∧ ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ∨ 𝑃 ) ) = ( ( 𝐼 ‘ ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
| 32 |
9 17 18 11 23 30 31
|
syl312anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ∨ 𝑃 ) ) = ( ( 𝐼 ‘ ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
| 33 |
28
|
fvoveq1d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ∨ 𝑃 ) ) = ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) ) |
| 34 |
28
|
fveq2d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 35 |
34
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ( 1. ‘ 𝐾 ) ( meet ‘ 𝐾 ) 𝑋 ) ) ⊕ ( 𝐼 ‘ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
| 36 |
32 33 35
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |