Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatc1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjatc1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjatc1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihjatc1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihjatc1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihjatc1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihjatc1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjatc1.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihjatc1.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
1 2 3 4 5 6 7 8 9
|
dihjatc1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
11 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
3 7 11
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑈 ∈ LMod ) |
13 |
|
lmodabl |
⊢ ( 𝑈 ∈ LMod → 𝑈 ∈ Abel ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑈 ∈ Abel ) |
15 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
16 |
15
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
17 |
12 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
18 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
19 |
18
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
20 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
21 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
22 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
24 |
1 3 9 7 15
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
11 23 24
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
26 |
17 25
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
27 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
28 |
1 6
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
29 |
27 28
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑄 ∈ 𝐵 ) |
30 |
1 3 9 7 15
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
31 |
11 29 30
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
32 |
17 31
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
33 |
8
|
lsmcom |
⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
34 |
14 26 32 33
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
35 |
10 34
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑄 ) ) = ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |