Metamath Proof Explorer


Theorem dihjatc3

Description: Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014)

Ref Expression
Hypotheses dihjatc1.b 𝐵 = ( Base ‘ 𝐾 )
dihjatc1.l = ( le ‘ 𝐾 )
dihjatc1.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjatc1.j = ( join ‘ 𝐾 )
dihjatc1.m = ( meet ‘ 𝐾 )
dihjatc1.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjatc1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjatc1.s = ( LSSum ‘ 𝑈 )
dihjatc1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihjatc3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑄 ) ) = ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ( 𝐼𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dihjatc1.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjatc1.l = ( le ‘ 𝐾 )
3 dihjatc1.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihjatc1.j = ( join ‘ 𝐾 )
5 dihjatc1.m = ( meet ‘ 𝐾 )
6 dihjatc1.a 𝐴 = ( Atoms ‘ 𝐾 )
7 dihjatc1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjatc1.s = ( LSSum ‘ 𝑈 )
9 dihjatc1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
10 1 2 3 4 5 6 7 8 9 dihjatc1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑄 ) ) = ( ( 𝐼𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 3 7 11 dvhlmod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑈 ∈ LMod )
13 lmodabl ( 𝑈 ∈ LMod → 𝑈 ∈ Abel )
14 12 13 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑈 ∈ Abel )
15 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
16 15 lsssssubg ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
17 12 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
18 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝐾 ∈ HL )
19 18 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝐾 ∈ Lat )
20 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑋𝐵 )
21 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑌𝐵 )
22 1 5 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
23 19 20 21 22 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
24 1 3 9 7 15 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 𝑌 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
25 11 23 24 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
26 17 25 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) )
27 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑄𝐴 )
28 1 6 atbase ( 𝑄𝐴𝑄𝐵 )
29 27 28 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑄𝐵 )
30 1 3 9 7 15 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐵 ) → ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
31 11 29 30 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
32 17 31 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) )
33 8 lsmcom ( ( 𝑈 ∈ Abel ∧ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ( 𝐼𝑄 ) ) = ( ( 𝐼𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
34 14 26 32 33 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ( 𝐼𝑄 ) ) = ( ( 𝐼𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
35 10 34 eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑄 ) ) = ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ( 𝐼𝑄 ) ) )