| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjatc1.b |
|- B = ( Base ` K ) |
| 2 |
|
dihjatc1.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihjatc1.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dihjatc1.j |
|- .\/ = ( join ` K ) |
| 5 |
|
dihjatc1.m |
|- ./\ = ( meet ` K ) |
| 6 |
|
dihjatc1.a |
|- A = ( Atoms ` K ) |
| 7 |
|
dihjatc1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 8 |
|
dihjatc1.s |
|- .(+) = ( LSSum ` U ) |
| 9 |
|
dihjatc1.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
dihjatc1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ Q ) ) = ( ( I ` Q ) .(+) ( I ` ( X ./\ Y ) ) ) ) |
| 11 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 12 |
3 7 11
|
dvhlmod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> U e. LMod ) |
| 13 |
|
lmodabl |
|- ( U e. LMod -> U e. Abel ) |
| 14 |
12 13
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> U e. Abel ) |
| 15 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 16 |
15
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
| 17 |
12 16
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
| 18 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> K e. HL ) |
| 19 |
18
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> K e. Lat ) |
| 20 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> X e. B ) |
| 21 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> Y e. B ) |
| 22 |
1 5
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 23 |
19 20 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( X ./\ Y ) e. B ) |
| 24 |
1 3 9 7 15
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X ./\ Y ) e. B ) -> ( I ` ( X ./\ Y ) ) e. ( LSubSp ` U ) ) |
| 25 |
11 23 24
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( X ./\ Y ) ) e. ( LSubSp ` U ) ) |
| 26 |
17 25
|
sseldd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( X ./\ Y ) ) e. ( SubGrp ` U ) ) |
| 27 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> Q e. A ) |
| 28 |
1 6
|
atbase |
|- ( Q e. A -> Q e. B ) |
| 29 |
27 28
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> Q e. B ) |
| 30 |
1 3 9 7 15
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. B ) -> ( I ` Q ) e. ( LSubSp ` U ) ) |
| 31 |
11 29 30
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` Q ) e. ( LSubSp ` U ) ) |
| 32 |
17 31
|
sseldd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` Q ) e. ( SubGrp ` U ) ) |
| 33 |
8
|
lsmcom |
|- ( ( U e. Abel /\ ( I ` ( X ./\ Y ) ) e. ( SubGrp ` U ) /\ ( I ` Q ) e. ( SubGrp ` U ) ) -> ( ( I ` ( X ./\ Y ) ) .(+) ( I ` Q ) ) = ( ( I ` Q ) .(+) ( I ` ( X ./\ Y ) ) ) ) |
| 34 |
14 26 32 33
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( I ` ( X ./\ Y ) ) .(+) ( I ` Q ) ) = ( ( I ` Q ) .(+) ( I ` ( X ./\ Y ) ) ) ) |
| 35 |
10 34
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( Q .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ Q ) ) = ( ( I ` ( X ./\ Y ) ) .(+) ( I ` Q ) ) ) |