Metamath Proof Explorer


Theorem dihmeetlem8N

Description: Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change .\/ order of ( X ./\ Y ) .\/ p here and down? (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem8.b
|- B = ( Base ` K )
dihmeetlem8.l
|- .<_ = ( le ` K )
dihmeetlem8.h
|- H = ( LHyp ` K )
dihmeetlem8.j
|- .\/ = ( join ` K )
dihmeetlem8.m
|- ./\ = ( meet ` K )
dihmeetlem8.a
|- A = ( Atoms ` K )
dihmeetlem8.u
|- U = ( ( DVecH ` K ) ` W )
dihmeetlem8.s
|- .(+) = ( LSSum ` U )
dihmeetlem8.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihmeetlem8N
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( p e. A /\ -. p .<_ W ) /\ ( p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) )

Proof

Step Hyp Ref Expression
1 dihmeetlem8.b
 |-  B = ( Base ` K )
2 dihmeetlem8.l
 |-  .<_ = ( le ` K )
3 dihmeetlem8.h
 |-  H = ( LHyp ` K )
4 dihmeetlem8.j
 |-  .\/ = ( join ` K )
5 dihmeetlem8.m
 |-  ./\ = ( meet ` K )
6 dihmeetlem8.a
 |-  A = ( Atoms ` K )
7 dihmeetlem8.u
 |-  U = ( ( DVecH ` K ) ` W )
8 dihmeetlem8.s
 |-  .(+) = ( LSSum ` U )
9 dihmeetlem8.i
 |-  I = ( ( DIsoH ` K ) ` W )
10 1 2 3 4 5 6 7 8 9 dihjatc1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( p e. A /\ -. p .<_ W ) /\ ( p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) )