Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihmeetlem8N
Metamath Proof Explorer
Description: Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we
change .\/ order of ( X ./\ Y ) .\/ p here and down?
(Contributed by NM , 6-Apr-2014) (New usage is discouraged.)
Ref
Expression
Hypotheses
dihmeetlem8.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
dihmeetlem8.l
⊢ ≤ = ( le ‘ 𝐾 )
dihmeetlem8.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
dihmeetlem8.j
⊢ ∨ = ( join ‘ 𝐾 )
dihmeetlem8.m
⊢ ∧ = ( meet ‘ 𝐾 )
dihmeetlem8.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
dihmeetlem8.u
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem8.s
⊢ ⊕ = ( LSSum ‘ 𝑈 )
dihmeetlem8.i
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion
dihmeetlem8N
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) )
Proof
Step
Hyp
Ref
Expression
1
dihmeetlem8.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
2
dihmeetlem8.l
⊢ ≤ = ( le ‘ 𝐾 )
3
dihmeetlem8.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
4
dihmeetlem8.j
⊢ ∨ = ( join ‘ 𝐾 )
5
dihmeetlem8.m
⊢ ∧ = ( meet ‘ 𝐾 )
6
dihmeetlem8.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
7
dihmeetlem8.u
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8
dihmeetlem8.s
⊢ ⊕ = ( LSSum ‘ 𝑈 )
9
dihmeetlem8.i
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
10
1 2 3 4 5 6 7 8 9
dihjatc1
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) )