Metamath Proof Explorer


Theorem dihmeetlem8N

Description: Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change .\/ order of ( X ./\ Y ) .\/ p here and down? (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem8.b B = Base K
dihmeetlem8.l ˙ = K
dihmeetlem8.h H = LHyp K
dihmeetlem8.j ˙ = join K
dihmeetlem8.m ˙ = meet K
dihmeetlem8.a A = Atoms K
dihmeetlem8.u U = DVecH K W
dihmeetlem8.s ˙ = LSSum U
dihmeetlem8.i I = DIsoH K W
Assertion dihmeetlem8N K HL W H X B Y B p A ¬ p ˙ W p ˙ X X ˙ Y ˙ W I X ˙ Y ˙ p = I p ˙ I X ˙ Y

Proof

Step Hyp Ref Expression
1 dihmeetlem8.b B = Base K
2 dihmeetlem8.l ˙ = K
3 dihmeetlem8.h H = LHyp K
4 dihmeetlem8.j ˙ = join K
5 dihmeetlem8.m ˙ = meet K
6 dihmeetlem8.a A = Atoms K
7 dihmeetlem8.u U = DVecH K W
8 dihmeetlem8.s ˙ = LSSum U
9 dihmeetlem8.i I = DIsoH K W
10 1 2 3 4 5 6 7 8 9 dihjatc1 K HL W H X B Y B p A ¬ p ˙ W p ˙ X X ˙ Y ˙ W I X ˙ Y ˙ p = I p ˙ I X ˙ Y