Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatc1.b |
|
2 |
|
dihjatc1.l |
|
3 |
|
dihjatc1.h |
|
4 |
|
dihjatc1.j |
|
5 |
|
dihjatc1.m |
|
6 |
|
dihjatc1.a |
|
7 |
|
dihjatc1.u |
|
8 |
|
dihjatc1.s |
|
9 |
|
dihjatc1.i |
|
10 |
|
simp11 |
|
11 |
|
simp11l |
|
12 |
11
|
hllatd |
|
13 |
|
simp12 |
|
14 |
|
simp13 |
|
15 |
1 5
|
latmcl |
|
16 |
12 13 14 15
|
syl3anc |
|
17 |
|
simp2l |
|
18 |
1 6
|
atbase |
|
19 |
17 18
|
syl |
|
20 |
1 4
|
latjcl |
|
21 |
12 16 19 20
|
syl3anc |
|
22 |
|
simp2 |
|
23 |
|
simp3l |
|
24 |
1 2 3 4 5 6
|
dihmeetlem6 |
|
25 |
10 13 14 22 23 24
|
syl32anc |
|
26 |
1 2 4 5 6
|
dihmeetlem5 |
|
27 |
11 13 14 17 23 26
|
syl32anc |
|
28 |
27
|
breq1d |
|
29 |
25 28
|
mtbid |
|
30 |
1 2 4
|
latlej2 |
|
31 |
12 16 19 30
|
syl3anc |
|
32 |
1 2 4 5 6 3 9 7 8
|
dihvalcq2 |
|
33 |
10 21 29 22 31 32
|
syl122anc |
|
34 |
|
eqid |
|
35 |
2 5 34 6 3
|
lhpmat |
|
36 |
10 22 35
|
syl2anc |
|
37 |
36
|
oveq2d |
|
38 |
|
simp11r |
|
39 |
1 3
|
lhpbase |
|
40 |
38 39
|
syl |
|
41 |
|
simp3r |
|
42 |
1 2 4 5 6
|
atmod1i2 |
|
43 |
11 17 16 40 41 42
|
syl131anc |
|
44 |
|
hlol |
|
45 |
11 44
|
syl |
|
46 |
1 4 34
|
olj01 |
|
47 |
45 16 46
|
syl2anc |
|
48 |
37 43 47
|
3eqtr3d |
|
49 |
48
|
fveq2d |
|
50 |
49
|
oveq2d |
|
51 |
33 50
|
eqtrd |
|